

Few-body physics: getting more effective

Mike Birse The University of Manchester

Background

Over last \sim 20 years: sea change in few-body physics

- ideas of universality, the renormalisation group and effective field theory have become central [König; Endo]
- started with suggestion of Weinberg in context of nuclear forces [Weinberg, Phys Lett B251 (1990) 288; Nucl Phys B363 (1991) 3]
- then took off with van Kolck and Kaplan, Savage and Wise [van Kolck, Nucl Phys A645 (1999) 273; Kaplan, Savage, and Wise, Phys Lett B424 (1998) 390; Nucl Phys B534 (1998) 329; Bedaque, Hammer and van Kolck, Phys Rev Lett 82 (1999) 463; Nucl Phys A646 (1999) 444]
- demonstrated that EFT could be renormalised nonperturbatively (contrast to chiral perturbation theory for mesons, single baryons)

Identified nontrivial fixed point of the renormalisation group

- scale-free system → universal features (no "memory" of underlying physics)
- describes low-energy scattering of two non-relativistic particles with infinite scattering length, *a* → ∞: unitary limit [Weinberg, Nucl Phys B363 (1991) 3]
- EFT for systems with scattering lengths much larger than range of interactions
- assumes good separation of scales: deviations from universality expanded in powers of ratios of low-energy scales to scales of underlying physics ("power counting")
- ightarrow systematic calculations with estimates of errors

"Pionless" EFT (only short-range interactions)

Two-body systems

- theory of nonrelativistic particles with contact interactions, builds on effective-range expansion
 [Blatt and Jackson, Phys Rev 76 (1949) 18; Bethe, Phys Rev 76 (1949) 38]
- provides consistent effective operators for currents etc
- can be extended to include Coulomb potential (DW ERE) [Kong and Ravndal, Phys Lett B450 (1999) 320; Nucl Phys A665 (2000) 137]

Some lessons from EFT

- off-shell forms of potentials are not physics
- different choices of two-body potential compensated by use of consistent effective operators, many-body forces
- many-body forces, in particular three-body, are unavoidable [Sekiguchi; ...]

Three-body systems

- three-body force needed at leading order (marginal perturbation)
- describes Phillips line [Phillips, Nucl Phys A107 (1968) 209]

nd scattering length against ³H binding energy for model *NN* potentials, compared with LO and NLO pionless EFT [from: Bedaque *et al*, Nucl Phys A714 (2003) 589]

Also describes Efimov effect [Efimov, Sov J Nucl Phys 12 (1971) 589]

- infinite tower of geometrically spaced bound states in unitary limit
- universal ratio: discrete relic of scale invariance (marginal, cycle)
- three-body force fixes energies [Kievsky]

Inverse scattering length, 1/a

[from: Kraemer et al, Nature 440 (2006) 315]

Four- and more-body systems

- no further forces needed at leading order [Platter *et al*, Phys Rev A70 (2004) 052101]
- two four-body states below each Efimov three-body state [von Stecher et al, Nature Phys 5 (2009) 417; Deltuva, Phys Rev A82 (2010) 040701]
- explains Tjon line: correlation between ³H and ⁴He energies [Tjon, Phys Lett B56 (1975) 217]
- matches quite well two 0⁺ states of ⁴He [König]
- similar pairs of states found for N ≥ 4 particles [Gattobigio *et al*, Phys Rev A86 (2012) 042513; A90 (2014) 032504; Dohet-Eraly]
- rely on impressive developments in computational methods [Lazauskas; Kievsky; Deltuva; ...]

Ultra-cold atoms in traps

- beautiful realisations of this physics [Chin; Endo]
- $\bullet\,$ Feshbach resonances used to tune scattering length \gg range
 - $(\rightarrow$ really good separation of scales)
- first Efimov state observed in 2006

[Kraemer et al, Nature 440 (2006) 315]

• periodic with Efimov factor 22.7

[Huang et al, Phys Rev Lett 112 (2014) 190401]

• then four- and five-body states

[Ferlaino *et al*, Phys.Rev.Lett. 102 (2009) 140401; Zenesini *et al*, New J Phys 15 (2013) 0430]

Ultra-cold atoms in traps

- beautiful realisations of this physics [Chin; Endo]
- $\bullet\,$ Feshbach resonances used to tune scattering length \gg range
 - $(\rightarrow$ really good separation of scales)
- first Efimov state observed in 2006

[Kraemer et al, Nature 440 (2006) 315]

• periodic with Efimov factor 22.7

[Huang et al, Phys Rev Lett 112 (2014) 190401]

• then four- and five-body states

[Ferlaino *et al*, Phys.Rev.Lett. 102 (2009) 140401; Zenesini *et al*, New J Phys 15 (2013) 0430]

⁴He atom clusters

- really shallow dimer: 140 neV [Dörner]
- spatial distribution imaged by laser ionisation [Zeller *et al*, PNAS 113 (2016) 14651]
- Efimov trimer observed [Kunitski et al, Science 348 (2015) 551]

Nuclear physics

Pionless EFT valid only for very low-energy states

 eg very weakly bound nuclei, halo ≫ core: "halo" or "cluster" EFT [Mathis; Carbonell; Filandri]

Higher energies require pion-exchange forces: chiral EFTs

- KSW added these perturbatively, but ...
- expansion fails to converge in *S* and *P* waves [Fleming *et al*, Nucl Phys A677 (2000)] 313; Kaplan, arXiv:1905.07485]
- common work-around: "Weinberg prescription"
- expand potential using perturbative counting and then treat it nonperturbatively [Epelbaum *et al*, Rev Mod Phys 81 (2009) 1773]
- works quite well in practice [Golak; Viviani], but ...
- no guarantee of consistent counting for observables
- alternative power countings have been proposed

[Pavon Valderrama, arXiv:1902.08172]

Recent developments

Pionless EFT: no leading four-body force, but exact order unknown

• needed at same order as effective range (NLO) [Bazak *et al*, Phys Rev Lett 122 (2019) 143001; <u>Kirscher</u>]

Coulomb potential in pionless EFT

• universal effects in few-body systems being studied [Schmickler *et al*, arXiv:1904.00913]

Chiral EFTs

 counting of three-body interactions in presence of pion exchange (and other long-range two-body forces)
 [Odell *et al*, arXiv:1903.00034]

Weinberg approach

• now implemented to 5th order and beyond

[Reinert et al, Eur Phys J A54 (2018) 86; Golak; Reinert]

Hadronic molecules

- X(3872) less than 200 keV from $D^0 \overline{D}^{*0}$ threshold
- other states like Z_c(3900), Z_c(4020) ... close to DD or BB thresholds
- also pentaquarks $P_c(4312)$, $P_c(4440)$, $P_c(4457)$ near $\overline{D}\Sigma_c$
- could be molecules or have large molecular components [Hanhart and Klempt, arXiv:1906.11971; Liu *et al*, Phys Rev Lett 122 (2019) 242001; <u>Ramos</u>]

(universal features if close enough to threshold)

Cluster scattering and reactions

- resonating group method for scattering in pionless EFT [Naidon et al, J Phys B 49 (2016) 034002]
- scattering in lattice and pionless EFT [Elhatisari et al, Phys Lett B768 (2017) 337; Deltuva, Phys Rev A96 (2017) 022701]
- (d,p) transfer reaction in halo EFT [Schmidt *et al*, Phys Rev C 99 (2019) 054611]

Lessons from EFT

Potentials and wave functions are not observables

• depend on theorists' choices (off-shell form, field representation)

Instead, focus on quantities that are "theory independent":

- asymptotic normalisation coefficients, not spectroscopic factors [Mukhamedzhanov *et al*, Phys Rev C63 (2001) 024612; Phys Rev C99 (2019) 024311]
- Tan's "contact" terms, not short-range correlations [Tan, Ann Phys 323 (2008) 2952; Weiss *et al*, Phys.Rev. C92 (2015) 054311; <u>Barnea</u>]

Lessons from EFT

Potentials and wave functions are not observables

depend on theorists' choices (off-shell form, field representation)

Instead, focus on quantities that are "theory independent":

- asymptotic normalisation coefficients, not spectroscopic factors [Mukhamedzhanov *et al*, Phys Rev C63 (2001) 024612; Phys Rev C99 (2019) 024311]
- Tan's "contact" terms, not short-range correlations [Tan, Ann Phys 323 (2008) 2952; Weiss *et al*, Phys.Rev. C92 (2015) 054311; <u>Barnea</u>]

Many-body forces expected in any effective theory

- Phillips line in ⁶Li: hint of three-body force? [Lei *et al*, Phys Rev C98 (2018) 051001; <u>Elster</u>]
- three-body forces in transfer reactions [Dinmore et al, Phys Rev C99 (2019) 064612; <u>Dinmore</u>]

Nuclear reactions

Would like an effective theory for nuclear reactions

- but issues with separation of scales
- inverse core radii are small, $1/R_c \lesssim 60 \text{ MeV} \sim \text{low-energy scale}$?
- Coulomb scale can be large, $\alpha Z_1 Z_2 M_{red} \sim$ 140 MeV (ρ + ⁴⁰Ca) \rightarrow contact interactions ineffective
- cannot apply halo EFT to most reactions, even at low energies
 → perhaps add 1/R_c to list of low-energy scales?
- δ-shell potentials, finite-*r* boundary conditions often used as regulators, but perhaps we should take them more seriously
- for example: use a version of *R*-matrix theory? [Tennyson]

Many areas of few-body physics with no good separation of scales \rightarrow ideas of universality and effective field theory do not apply

But where they do...

Many areas of few-body physics with no good separation of scales \rightarrow ideas of universality and effective field theory do not apply

But where they do...

We should strive to be as effective as possible!