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65. We need to show that
〈f |K̂|g〉 = 〈g|K̂|f〉

for any choice of (differentiable) functions f and g that tend to zero for x → ±∞. We use
integration by parts:

〈f |K̂|g〉 = 〈f |1̂K̂|g〉 =

∫ ∞
−∞
〈f |x〉︸ ︷︷ ︸
f(x)

〈x|K̂|g〉︸ ︷︷ ︸
−idg/dx

dx (resolution of unity)

= [f(x) {−ig(x)}]∞−∞︸ ︷︷ ︸
0, because f, g → 0

+

∫ ∞
−∞

i
df

dx
g dx

=

∫ ∞
−∞

g(x)

{
−idf

dx

}
= 〈g|K̂|f〉.

⇒ K̂ is Hermitian, given the boundary conditions
⇒ K̂ has real eigenvalues (as for any Hermitan operator).

Eigenvalue equation: K̂|ek〉 = k|ek〉, with k ∈ R. In the x representation this reads

〈x|K̂|ek〉 = −idek
dx

= kek(x) ,

which has the solution ek(x) = Ceikx. [We should note, however, that this eigenfunction
does not obey the boundary conditions ek(x) → 0 for x → ±∞, and that the integral of
|ek(x)|2 = |C|2 is divergent.]

66. Same eigenvalue equation as in Q.65, but different interval and boundary conditions. The
solutions are again ek(x) = Ceikx, but the condition ek(−π) = ek(π) requires

Ce−ikπ = Ceikπ, or e2πik = 1.

Thus, k can be any integer.

Normalization:

∫ π

−π
|ek(x)|2dx = 2π|C|2 = 1, ⇒ |C| = 1/

√
2π. Thus,

ek(x) =
eikx√

2π
, with k ∈ Z ;

we could include an arbitrary phase factor in the solution, but there is no reason to do so.

67. First we verify the orthogonality of the eigenvectors |en〉 and |em〉 with n 6= m:

〈en|em〉 =

∫ π

−π
en(x) em(x) dx

=
1

2π

∫ π

−π
ei(m−n)x dx

=
1

2πi(m− n)

[
ei(m−n)x

]π
−π = 0.

From Q.66 we also have 〈en|en〉 = 1. Hence 〈en|em〉 = δnm , which we use below.

Now, if |f〉 =
∑

n fn|en〉 (with a similar expansion for |g〉), we have



(i) 〈em|f〉 =
∞∑

n=−∞

fn

δmn︷ ︸︸ ︷
〈em|en〉 = fm ;

in the first step we used the fact that the inner product is linear in its second argument.

(ii) Insert a resolution of unity between 〈f | and |g〉 and use the result of part (i):

〈f |g〉 = 〈f |1̂|g〉 =
∞∑

n=−∞

〈f |en〉︸ ︷︷ ︸
fn

〈en|g〉︸ ︷︷ ︸
gn

=
∞∑

n=−∞

fn gn .

(iii) 〈f |f〉 =
∞∑

n=−∞

fnfn =
∞∑

n=−∞

|fn|2 is just a special case of part (ii).

68. Briefly —

f(x) = 〈x|f〉 = 〈x|1̂|f〉 (nothing is changed by inserting 1̂)

=

∫ ∞
−∞
〈x|ek〉︸ ︷︷ ︸
ek(x)

〈ek|f〉︸ ︷︷ ︸
f̃(k)

dk (resolution of unity)

=
1√
2π

∫ ∞
−∞

eikxf̃(k) dk ,

which is the inverse Fourier transform.

69. We note that

− d2

dx2
un(x) = 〈x|K̂2|un〉 and x2un(x) = 〈x|X̂2|un〉 ,

so the eigenvalue problem can be expressed in the following form that is independent of the
representation: (

K̂2 + X̂2
)
|un〉 = (2n+ 1)|un〉 .

In the k representation this becomes

〈ek|K̂2|un〉+ 〈ek|X̂2|un〉 = (2n+ 1)〈ek|un〉 , (1)

where, as shown in Lecture 23,

〈ek|un〉 ≡ ũn(k) (the Fourier transform of un(x)),

〈ek|K̂2|un〉 = k2ũn(k) and 〈ek|X̂2|un〉 = − d2

dk2
ũn(k) .

Thus, (1) is identical to

k2ũn −
d2ũn
dk2

= (2n+ 1)ũn . (2)

[Of course, this can also be obtained by Fourier transformation of the original differential
equation satisfied by un(x).]

Now, (2) is the same differential equation as

−d2un
dx2

+ x2un = (2n+ 1)un ;

all that has changed is the name of the independent variable (x → k) and the name of the
function (un → ũn). It is claimed that the solution for a given n is unique, so un and ũn can
differ only by a factor: ũn(s) = Cun(s), where the symbol s is standing in for either x or k.



The fact that C must have unit modulus follows from Parseval’s theorem, or, equivalently, by
comparing results for 〈un|un〉 evaluated in the two different representations:

〈un|un〉 =

∫ ∞
−∞
〈un|x〉〈x|un〉 dx =

∫ ∞
−∞

un(x)un(x) dx ≡
∫ ∞
−∞
|un(s)|2 ds

and

〈un|un〉 =

∫ ∞
−∞
〈un|ek〉〈ek|un〉 dk =

∫ ∞
−∞
|ũn(k)|2 dk ≡

∫ ∞
−∞
|C|2|un(s)|2 ds ;

comparison of the right-hand sides gives |C|2 = 1.

70. In my solution, I’ve replaced x′ (from the original statement of the problem) by y or z below.

(i) To prove that the scalar product 〈f |g〉 is preserved, we could follow the same procedure
as in Q.69. Alternatively, we can just use the definition of F̂ to define two new functions

f ′(x) ≡ 〈x|F̂ |f〉 =
1√
2π

∫ ∞
−∞

e−ixyf(y) dy ;

g′(x) ≡ 〈x|F̂ |g〉 =
1√
2π

∫ ∞
−∞

e−ixzg(z) dz .

The inner product of these functions is

〈f ′|g′〉 =

∫ ∞
−∞

f ′(x) g′(x) dx =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

eixyf(y) dy

∫ ∞
−∞

e−ixzg(z) dz

)
dx . (3)

By performing the x integration first and making use of
∫∞
−∞e

ix(y−z) dx = 2πδ(y − z),
equation (3) becomes

〈f ′|g′〉 =

∫ ∞
−∞

∫ ∞
−∞

f(y) g(z) δ(y − z) dz dy =

∫ ∞
−∞

f(y) g(y) dy = 〈f |g〉.

Thus, F̂ preserves the inner product (so that F̂ is unitary).

(ii) Starting from

g′(x) ≡ 〈x|F̂ |g〉 =
1√
2π

∫ ∞
−∞

e−ixzg(z) dz ,

we apply F̂ a second time:

〈x|F̂ 2|g〉 = 〈x|F̂ |g′〉 =
1

2π

∫ ∞
−∞

e−ixy
(∫ ∞
−∞

e−iyzg(z) dz︸ ︷︷ ︸
g′(y)

)
dy

By doing the y integral first and using
∫∞
−∞e

−iy(x+z) dy = 2πδ(x+ z), we get

〈x|F̂ 2|g〉 =

∫ ∞
−∞

g(z) δ(x+ z) dz = g(−x) .

By repeating this process, we obtain 〈x|F̂ 3|g〉 = g′(−x) and 〈x|F̂ 4|g〉 = g(x) ≡ 〈x|g〉.
Thus we have F̂ 4 = 1̂.

(iii) The eigenvalue equation for F̂ is
F̂ |u〉 = ω|u〉,

where |u〉 6= |0〉. Applying F̂ to each side gives

F̂ 2|u〉 = ωF̂ |u〉 = ω2|u〉,



and applying F̂ twice more gives

F̂ 4|u〉 = ω4|u〉.

But F̂ 4 = 1̂, so the last equation is |u〉 = ω4|u〉. Since |u〉 is not the zero vector |0〉, this
implies that ω4 = 1⇒ ω = 1, i, −1, or −i.

(iv) In the question we defined

|u〉 = 1
4

(
1̂ + F̂ + F̂ 2 + F̂ 3

)
|g〉.

By applying F̂ to each side and using F̂ 4 = 1̂ we find

F̂ |u〉 = 1
4

(
F̂ + F̂ 2 + F̂ 3 + F̂ 4︸︷︷︸

F̂ 4=1̂

)
|g〉 = |u〉.

So |u〉 is an eigenvector of F̂ with eigenvalue 1.

(v) In principle, it’s not hard to show that P̂ 2
1 = P̂ 1: we just square P̂ 1 and make use of the

identities F̂ 4 = 1̂, F̂ 5 = F̂ and F̂ 6 = F̂ 2. Explicitly,

P̂ 2
1 = 1

16

(
1̂ + F̂ + F̂ 2 + F̂ 3

)(
1̂ + F̂ + F̂ 2 + F̂ 3

)
= 1

16

([
1̂ + F̂ + F̂ 2 + F̂ 3

]
+
[
F̂ + F̂ 2 + F̂ 3 + F̂ 4

]
+
[
F̂ 2 + F̂ 3 + F̂ 4 + F̂ 5

]
+
[
F̂ 3 + F̂ 4 + F̂ 5 + F̂ 6

])
= 1

16

([
1̂ + F̂ + F̂ 2 + F̂ 3

]
+
[
F̂ + F̂ 2 + F̂ 3 + 1̂

]
+
[
F̂ 2 + F̂ 3 + 1̂ + F̂

]
+
[
F̂ 3 + 1̂ + F̂ + F̂ 2

])
= 1

16

(
[4P̂ 1] + [4P̂ 1] + [4P̂ 1] + [4P̂ 1]

)
= P̂ 1 .

(vi) To construct P̂ ω we proceed more systematically. We require P̂ ω to satisfy

F̂ P̂ ω|g〉 = ωP̂ ω|g〉 .

If this is to hold for any |g〉, the operators must be the same on each side,

F̂ P̂ ω = ωP̂ ω . (4)

Inspection of the projection operator that appears in parts (iv) and (v) suggests that we
try a solution of the form P̂ ω = a1̂ + bF̂ + cF̂ 2 + dF̂ 3, where (a, b, c, d) are constants to
be determined. By inserting this into (4) we find

aF̂ + bF̂ 2 + cF̂ 3 + d1̂ = ω
(
a1̂ + bF̂ + cF̂ 2 + dF̂ 3

)
.

Comparing coefficients of F̂ n on each side gives

coeff. F̂ 0 ⇒ d = ωa (F̂ 0 ≡ 1̂)

F̂ 3 ⇒ c = ωd = ω2a

F̂ 2 ⇒ b = ωc = ω3a

F̂ 1 ⇒ a = ωb = ω4a (correct, as ω4 = 1).



So P̂ ω = a
(
1̂ + ω3F̂ + ω2F̂ 2 + ωF̂ 3

)
will do the job. To determine the coefficient a we use

the fact that P̂ ω is a projection operator, so that P̂ 2
ω = P̂ ω. A calculation very similar to

the one in part (v) shows that a = 1
4
. Thus,

P̂ ω = 1
4

(
1̂ + ω3F̂ + ω2F̂ 2 + ωF̂ 3

)
.

Finally we verify the completeness relation for the projection operators:

∑
ω P̂ ω = 1

4

([
1̂ + F̂ + F̂ 2 + F̂ 3

]
(from P̂ 1)

+
[
1̂− iF̂ − F̂ 2 + iF̂ 3

]
(from P̂ i)

+
[
1̂− F̂ + F̂ 2 − F̂ 3

]
(from P̂−1)

+
[
1̂ + iF̂ − F̂ 2 − iF̂ 3

])
(from P̂−i),

which cancels down to give
∑

ω P̂ ω = 1̂.

Meaning of the completeness relation: Any function g that can be Fourier transformed
can be decomposed as a sum of (up to) four eigenfunctions of the Fourier transformation
operator, F̂ ; i.e.,

〈x|g〉 = 〈x|1̂|g〉 =
∑
ω

〈x|P̂ ω|g〉 ≡
∑
ω

〈x|gω〉,

where |gω〉 = P̂ ω|g〉 and F̂ |gω〉 = ω|gω〉.


