PHYS20672 Complex Variables and Vector Spaces:
Solutions 7

65. We need to show that

66.

(fIKlg) = (9| K][f)
for any choice of (differentiable) functions f and g that tend to zero for x — +o0o. We use
integration by parts:

[e.9]

(fykyg>:<f\if(yg>:/ @@;\fqg) dz  (resolution of unity)
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0, because f,g — 0

-/ Zm{_j—f} — (I |f).

= K is Hermitian, given the boundary conditions
= K has real eigenvalues (as for any Hermitan operator).

Eigenvalue equation: Kle;) = k|ex), with & € R. In the z representation this reads

~ d
(] Kex) = =i~ = ken(a)
which has the solution ey(z) = Ce®*®. [We should note, however, that this eigenfunction

does not obey the boundary conditions ex(z) — 0 for £ — 400, and that the integral of
lex(x)|* = |C|? is divergent.]

Same eigenvalue equation as in Q.65, but different interval and boundary conditions. The
solutions are again e, (z) = Ce*® but the condition ej(—7) = ex(m) requires

C«e—zkfr — C@lkﬂ, or e27rzk —1.
Thus, k can be any integer.

Normalization: / ler()|?dz = 27|C|* = 1, = |C| = 1/v/27. Thus,

with k€ Z;

we could include an arbitrary phase factor in the solution, but there is no reason to do so.

67. First we verify the orthogonality of the eigenvectors |e,) and |e,,) with n # m:

(enlen) = [ eal@ en(e) do
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From Q.66 we also have (e,|e,) = 1. Hence (e,|€m) = Opm , which we use below.

Now, if |f) =", fulen) (with a similar expansion for |g)), we have



68.

69.

i €m|f Z fn em|€n fm;

n=—oo

in the first step we used the fact that the inner product is linear in its second argument.

(ii) Insert a resolution of unity between (f| and |g) and use the result of part (i):

o0

(flg) = (fIilg) = D (flen) {enlg) = Z T

n=—oo n=—oo

fn g"

(iii) (f|f) = Z Fafn = Z | f|? is just a special case of part (ii).

Briefly —
f(z) = (z|f) = (z[1|f) (nothing is changed by inserting 1)
= / (x|ex) (ex|f) dk (resolution of unity)
—o0 \G’W-’
ex@)  f(k)

_ \/LQ_W/ e F (k) dk

which is the inverse Fourier transform.
We note that
d2

—tin(@) = (2| Klun) - and - 2*un () = (| X2[un)

so the eigenvalue problem can be expressed in the following form that is independent of the
representation:

(K% + X)) |un) = (20 + 1) |un) -
In the k representation this becomes
(erl K2 un) + (ex| X2 Jun) = (20 + 1) (ex|un) , (1)
where, as shown in Lecture 23,
(eg|un) = U,(k) (the Fourier transform of u,(x)),

. R . dz
<€k|K2|un> = k2un(k:) and (ek|X2|un> = —@un(k‘)

Thus, (1) is identical to

d*i, N
U2 = (2n + 1), . (2)

[Of course, this can also be obtained by Fourier transformation of the original differential
equation satisfied by wu,(z).]

k2, —

Now, (2) is the same differential equation as

+ 27U, = (2n + Duy,;

all that has changed is the name of the independent variable (z — k) and the name of the
function (u,, — 4,). It is claimed that the solution for a given n is unique, so w,, and , can
differ only by a factor: 1, (s) = Cu,(s), where the symbol s is standing in for either x or k.



The fact that C' must have unit modulus follows from Parseval’s theorem, or, equivalently, by
comparing results for (u,|u,) evaluated in the two different representations:

(Up|uy) = /_OO (up|z)(z|uy,) de = /ooun(x) up(z)de = /Oo\un(s)\st

and - - -
(talun) = [ (wnlen)erun) db = [ Jaa0)P k= [ 1CP () ds;

comparison of the right-hand sides gives |C|?> = 1.
70. In my solution, I've replaced z’ (from the original statement of the problem) by y or z below.

(i) To prove that the scalar product (f|g) is preserved, we could follow the same procedure
as in Q.69. Alternatively, we can just use the definition of F' to define two new functions

f(@) = @Bl = m/ e F(y) dy
g'(z) = (2| Flg) = \/ﬂ/ e g(2)dz.

The inner product of these functions is

)= [ T = o [ ([Tentiian [ e o). o)

By performing the z integration first and making use of [~ =2 dz = 2716(y — 2),
equation (3) becomes

(f’|g’>=/i/zmg(2) y—z dzdy—/ W) 9(y) dy = (flg).

Thus, F' preserves the inner product (so that Fis unitary).
(ii) Starting from

J'(x) = (x| Flg) = e g(2) dz,

=l

we apply F a second time:

” 1 > —ix OO —iyz
(l#%la) = wlFlg) = 5 [~ [T eraa)ay

oo

By doing the y integral first and using [~ _e™#™2) dy = 216(z + 2), we get

(2] E?|g) = / " 9(2) bz + 2) dz = g(—x)

oo

By repeating this process, we obtain (z|F3|g) = ¢'(—z) and (z|F4|g) = g(x) = (z]g).
Thus we have F* = 1.

(iii) The eigenvalue equation for F is X
Flu) = wlu),

where |u) # |0). Applying F' to each side gives

B = wFlu) = w?lu),



and applying F' twice more gives
FYu) = wlu).

But F* = 1, so the last equation is |u) = w*|u). Since |u) is not the zero vector |0), this
implies that w* =1 = w =1, 4, —1, or —i.

In the question we defined
luy = (1 + F+ F2 + %)|g).
By applying F' to each side and using F* = 1 we find
Fluy = Y(F+ F2+ F* + I )|g) = |u).
Fa=1

So |u) is an eigenvector of F' with eigenvalue 1.

In principle, it’s not hard to show that ]5% — P1: we just square P, and make use of the
identities F* =1, F5 = = F and F% = F2. Explicitly,

Pr=i(1+FP+ PP+ )1+ F+F+F%)
SEN(E N

F+ F?* + F3 4 1]

F? 4+ F3 4 F* 4 ]

F? 4+ F* 4 F® + FS])

To construct P, we proceed more systematically. We require P, to satisfy
FP.lg) = wP,lg).
If this is to hold for any |g), the operators must be the same on each side,
FP,=wP,. (4)

Inspection of the projection operator that appears in parts (iv) and (v) suggests that we
try a solution of the form P, = al + bF + ¢F? + dF*3, where (a,b,c,d) are constants to
be determined. By inserting this into (4) we find

aF +bF? 4 cF? + dl = w(ai + bE + cF? +dﬁ’3).
Comparing coefficients of F™ on each side gives
coeff. F' = d=uwa (F°=1)
FP= c¢=wd=uw
F?= b=wc=wa

F'= a=wb=uwla (correct, as w* = 1).



So P, = a(l+ WEF + Wi EF? + wﬁ?’) will do the job. To determine the coefficient a we use
the fact that P, is a projection operator, so that pi = P,. A calculation very similar to
the one in part (v) shows that @ = 1. Thus,

A

P, = (1+w3ﬁ’+w2ﬁ2+wﬁ’3).

1
4

Finally we verify the completeness relation for the projection operators:

Zwﬁw:i([i—i—ﬁ—l—ﬁ’z—i—ﬁ’g] (from Py)
—i—ﬁ —iF — F? —i—z’ﬁ‘g} (from P;)
+[1—F+F2—F3} (from P_;)
+[i +iF — F? —Z'F?’]) (from P_;),

which cancels down to give 3 P, = 1.

Meaning of the completeness relation: Any function g that can be Fourier transformed
can be decomposed as a sum of (up to) four eigenfunctions of the Fourier transformation

operator, F'; i.e., A
(xlg) = (z|llg) = (@[Pulg) = ) (xlg),

w w

where |gw> = pw|g> and F|gw> = w|gw>'



