
PHYS20672 Complex Variables and Vector Spaces:
Solutions 6, Part 2

56. (i) This is similar to Q.55, but here we use the Gram–Schmidt process to construct an
orthonormal set of N − 1 vectors {|ej〉, j 6= i} from the vectors {|aj〉, j 6= i}. We then use
these to construct

|ăi〉 = Ci

(
|ai〉 −

∑
j 6=i

|ej〉〈ej|ai〉
)
,

which is orthogonal to all of the vectors |ej〉 and hence to all of the vectors |aj〉 with j 6= i.
The coefficient Ci is chosen so that

〈ai|ăi〉 = Ci

(
|ai|2 −

∑
j 6=i

|〈ai|ej〉|2
)

= 1.

[To avoid a possible source of confusion, note that the sets of vectors {|ej〉, j 6= i} would
be different for each i, so this would not, in practice, be an efficient process for calculating
the set of reciprocal vectors.]

(ii) If |b〉 =
∑

j bj|ai〉, then

〈ăi|b〉 =
∑
j

bj〈ăi|aj〉 =
∑
j

bjδij = bi .

Using this (and the definition of the outer product) we find(∑
i

|ai〉〈ăi|
)
|b〉 =

∑
i

|ai〉〈ăi|b〉 =
∑
i

bi|ai〉 = |b〉,

so we can see that
∑

i |ai〉〈ăi| has the same effect as 1̂.

(iii) Using the resolution of unity from part (ii), we find:

Â = Â1̂ = Â
(∑

i

|ai〉〈ăi|
)

=
∑
i

|bi〉〈ăi|

and
Â = 1̂Â1̂ =

(∑
i

|ai〉〈ăi|
)
Â
(∑

j

|aj〉〈ăj|
)

=
∑
i,j

|ai〉〈ăi|Â|aj〉〈ăj|.

(iv) Â|ai〉 = |bi〉. If the vectors {|bi〉} are linearly independent, we can construct the reciprocal
vectors, {|b̆i〉}. [Of course, if they are not independent, the construction fails at this point!]
Then

∑
i |bi〉〈b̆i| = 1̂, so that∑

i

|bi〉〈b̆i| =
∑
i

Â|ai〉〈b̆i| = Â
(∑

i

|ai〉〈b̆i|
)

︸ ︷︷ ︸
Â−1

= 1̂,

from which we can read off Â−1.

57. The sum of two linear operators, Ĉ = Â + B̂, and the product with a scalar, D̂ = λÂ, were
both defined in lectures; Ĉ and D̂ are linear operators, so the set is closed under addition and
under multiplication by a scalar.

The zero operator was defined by 0̂|a〉 = |0〉 for all |a〉 ∈ V. It is clearly linear, since 0̂(λ|b〉+µ|c〉)
and λ0̂|b〉+ µ0̂|c〉 both give |0〉



The additive inverse (−Â) can be defined as (−1)Â. It has the required property(
Â+ (−1)Â

)
|a〉 = Â|a〉+ (−1)Â|a〉

=
(
1 + (−1)

)
Â|a〉

= 0
(
Â|a〉

)
= |0〉 ;

this holds for any |a〉, so
(
Â + (−1)Â

)
≡ 0̂. Thus the set of linear operators on V is a vector

space.

58. The proof follows a similar pattern to the one for Hermitian operators:

Suppose that |vi〉 and |vj〉 are eigenvectors of the unitary operator Û ,

Û |vi〉 = ωi|vi〉 and Û |vj〉 = ωj|vj〉.

We need to investigate the orthogonality (or otherwise) of the eigenvectors, whilst also making
use of the property Û †Û = 1̂. This motivates us to consider

〈vj|vi〉 = 〈vj|Û †Û |vi〉 = ωi〈vj|Û †|vi〉, (1)

where we have used the fact that |vi〉 is an eigenvector of Û . Now, on the right-hand side of
Eq. (1) we have

〈vj|Û †|vi〉 = 〈vi|Û |vj〉 (definition of adjoint)

= ωj〈vi|vj〉 (since |vj〉 is an eigenvector of Û)

= ωj〈vj|vi〉.

Inserting this result into (1) we find

〈vj|vi〉 = ωiωj〈vj|vi〉, or (1− ωiωj)〈vj|vi〉 = 0. (2)

For the last equation to be true, one of the factors (1− ωiωj) and 〈vj|vi〉 must vanish.

If we take i = j, the factor 〈vi|vi〉 6= 0, so we can deduce that |ωi|2 = 1; thus, |ωi| = 1. This
will hold for every eigenvalue.

If instead we have i 6= j and ωi 6= ωj, then, after multiplying each side by ωj, we find ωiωj 6=
|ωj|2; but |ωj|2 = 1, so the factor (1− ωiωj) in (2) cannot be zero. Thus, 〈vj|vi〉 must be zero.

59. Checks of unitarity and Hermiticity: don’t attempt to do them ‘by inspection’ !

(i) We have (
0 −i
i 0

)†
=

(
0 −i
i 0

)
⇒ Hermitian ;(

0 −i
i 0

)†(
0 −i
i 0

)
=

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
⇒ unitary.

An equivalent test of unitarity is to check whether or not the columns are mutually
orthogonal unit vectors.

(ii) Same procedure:(
0 i
1 0

)†
=

(
0 1
−i 0

)
6=
(

0 i
1 0

)
⇒ not Hermitian ;(

0 i
1 0

)†(
0 1
−i 0

)
=

(
0 1
−i 0

)(
0 i
1 0

)
=

(
1 0
0 1

)
⇒ unitary .



(iii) Hermitian, but not unitary (the columns are not orthogonal unit vectors).

(iv) Neither.

Eigenvalues and eigenvectors: the procedure should be familiar from first year, so we give
the details in only two cases.

(i) Eigenvalue equation:

(
0 −i
i 0

)(
u1
u2

)
= µ

(
u1
u2

)
, or

(
−µ −i
i −µ

)(
u1
u2

)
=

(
0
0

)
.

Setting the determinant of the matrix of coefficients to zero gives µ2 − 1 = 0, so the
eigenvalue are µ1 = 1 and µ2 = −1. As expected for an Hermitian matrix, the eigenvalues
are real; and, as expected for a unitary matrix, they have unit modulus.

To find the eigenvectors, substitute µ1 and µ2 into the eigenvalue equation:

E.g., for µ1 = 1, the first row of

(
−1 −i
i −1

)(
u1
u2

)
=

(
0
0

)
tells us that −u1 − iu2 = 0, or

u2 = iu1. [The second row gives a useful check: iu1 − u2 = 0, which is the same result.]

Hence, after normalization,

(
u1
u2

)
=

1√
2

(
1
i

)
.

[When comparing with your own answers, remember that the overall phase of an eigen-
vector is not relevant, so that a result that is different by (say) a factor of i is still correct.]

Similarly, for eigenvalue µ2 = −1, a normalized eigenvector is
1√
2

(
1
−i

)
.

Orthogonality: 1
2

(
1
i

)†(
1
−i

)
= 1

2

(
1 −i

)( 1
−i

)
= 1

2

(
1 + (−i)2

)
= 0, as expected.

(ii) The eigenvalues satisfy µ2 − i = 0, so µ1,2 = ±(1 + i)/
√

2 = ±eiπ/4. They have unit
modulus, as expected for the eigenvalues of a unitary matrix.

The corresponding eigenvectors are
1√
2

(
1

±e−iπ/4
)

. They are orthogonal, as expected for

eigenvectors of a unitary matrix.

(iii) The characteristic equation is µ2 − 5µ+ 4 = (µ− 1)(µ− 4) = 0, so µ1 = 1 and µ2 = 4.

The eigenvectors are
1√
3

(
1 + i
−1

)
for µ = 1 and

1√
3

(
1

1− i

)
for µ = 4. They are orthog-

onal, as expected for eigenvectors of an Hermitian matrix.

(iv) The characteristic equation is (a − µ)2 = 0, so the root µ = a occurs twice. Inserting
µ = a into the eigenvalue equation we get(

a− a b
0 a− a

)(
u1
u2

)
=

(
bu2
0

)
=

(
0
0

)
.

Since b 6= 0, this requires u2 = 0; u1 can be anything other than zero, so take u1 = 1.

Thus, there is only one eigenvector:

(
1
0

)
.

Comments: The matrix is neither Hermitian nor unitary, so there is no reason to expect
there to be two linearly independent eigenvectors corresponding to the repeated eigenvalue
— though there might have been. In this example there was only one. However, it is still
true that the sum of the roots, a + a = 2a, equals the trace of the matrix, and their
product, a2, equals the determinant.

60. Eigenvalues: With c ≡ cos θ and s ≡ sin θ, the eigenvalue equation isc −s 0
s c 0
0 0 1

xy
z

 = ω

xy
z

 .



The eigenvalue ω satisfies the characteristic equation

(1− ω)
(
(c− ω)2 + s2

)
= 0 ,

whose solutions are ω1 = 1, ω2 = c+ is = eiθ and ω3 = e−iθ.

The matrix is real and orthogonal, which is a special case of unitary; as expected, the eigenvalues
all have unit modulus.

Eigenvectors: We assume below that θ 6= 0 or π.

ω1 = 1: A normalized eigenvector is v1 =

0
0
1

, either by inspection or by noting that the

rotation through angle θ leaves the z axis invariant.

ω2 = eiθ: −is −s 0
s −is 0
0 0 1− c− is

xy
z

 =

0
0
0

 .

From the third row we find z = 0. From either the first or second row we find y = −ix, so a

normalized eigenvector is v2 =
1√
2

 1
−i
0

.

ω3 = e−iθ: Similarly, v3 =
1√
2

1
i
0

.

It is easy to see that v1
†v2 = v1

†v3 = 0 and that v2
†v3 = 1

2

(
1 i 0

)1
i
0

 = 1
2
(1− 1 + 0) = 0.

61. (a) Q.56 showed how to construct the identity operator 1̂ using any linearly independent set
of vectors and their reciprocals. Here we take those vectors to be the eigenvectors of Â.
We have

Â = Â1̂ = Â
(∑

i

|ui〉〈ŭi|
)

=
∑
i

Â|ui〉〈ŭi| =
∑
i

λi|ui〉〈ŭi|.

(b) Left eigenvectors: Using the representation of Â derived in part (a),

〈ŭj|Â = 〈ŭj|
(∑

i

λi|ui〉〈ŭi|
)

=
∑
i

λi〈ŭj|ui〉〈ŭi|

=
∑
i

λi δji〈ŭi| = λj〈ŭj| ;

the factor δji picks out the term i = j from the sum.

(c) ‡‡ The matrix of eigenvectors, S, has elements Sjk = 〈ej|uk〉. We can verify that its inverse
has elements S−1ij = 〈ŭi|ej〉:∑

j

S−1ijSjk =
∑
j

〈ŭi|ej〉〈ej|uk〉 = 〈ŭi|1̂|uk〉 = δik ,

in which we spotted a resolution of unity and made use of the definition of the recip-
rocal vectors to get the final δik. We notice that row i of matrix S−1 is the row-vector
representing 〈ŭi| ; using the terminology of part (b), it is a left eigenvector of matrix A.



If A′ = S−1AS, its elements are

A′ij =
∑
k,l

〈ŭi|ek〉Akl〈el|uj〉

=
∑
k,l

〈ŭi|ek〉〈ek|Â|el〉〈el|uj〉

= 〈ŭi|1̂Â1̂|uj〉 = 〈ŭi|Â|uj〉 = 〈ŭi|λj|uj〉 = λjδij ;

i.e., the matrix A′ has elements λj along the diagonal and is zero elsewhere.

62. The method was sketched in the question. We have det(U†) = det(Uᵀ) = detU. For any two
N × N matrices A and B, det(AB) = detA detB. Then, using I = U†U, we have det I = 1
and hence det(U†U) = detU detU = |detU|2 = 1.

This result also follows from the fact that detU equals the product of its eigenvalues, all of
which have unit modulus in the case of a unitary matrix; see Q.58.

63. A unitary transformation does not alter the determinant or the trace of a matrix:

det(U†MU) = det(U†) detM detU

= |detU|2 detM

= detM (see Q.62 for |detU|2 = 1);

and

Tr(U†MU) = Tr(MUU†) (cyclic property of the trace)

= Tr(MI) (since UU† = I)

= TrM.

Now, in a representation in which M is diagonal,

Mdiag =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 and exp
(
Mdiag

)
=


eλ1 0 . . . 0
0 eλ2 . . . 0
...

...
. . .

...
0 0 . . . eλN

 ,

so that
det[exp(Mdiag)] = eλ1 eλ2 · · · eλN = eλ1+λ2+...+λN = exp[Tr(Mdiag)].

But the determinant and trace are unaffected by the unitary transformation, so det[expM] =
exp[TrM].

‡‡ The argument is easily extended to any matrix that can be diagonalized by a similarity
transformation, Mdiag = S−1MS. As before, the trace and determinant are unaltered by
diagonalization:

Tr(Mdiag) = Tr(S−1MS) = Tr(MSS−1) = Tr(MI) = TrM

and
det(Mdiag) = det(S−1) detM detS = detM,

since det(S−1) = 1/ detS.

[‡‡‡‡ Aside: What if we don’t know that the matrix can be diagonalized? In the general case
one can consider the function f(t) = det(exp[tM]), which satisfies the differential equation

df

dt
= (TrM)f .



If you want to derive this, first show that f(t + δt) = f(δt)f(t); then note that f(δt) =
det[I + δtM + O(δt2)] and expand the determinant to obtain f(δt) = 1 + (TrM)δt+ O(δt2).

The differential equation can be integrated, using the boundary condition f(0) = 1, to give

f(t) = det[exp(tM)] = etTrM .

Setting t = 1 gives the required formula.]

64. We define

D(λ) ≡
N∑
r=0

crλ
r,

and the corresponding matrix

D(M) ≡
N∑
r=0

crM
r, where M0 ≡ I.

If M is Hermitian or unitary, it can be diagonalized by a unitary transformation Mdiag = E†ME,
where the columns of E are the eigenvectors of M. We can diagonalize D(M) by applying the
same transformation. This should be obvious to you from the fact that an eigenvector of M
is also an eigenvector of D(M) ; alternatively, we can perform the transformation explicitly on
each of the terms in D(M). For example, Mr becomes

E†MrE = E†MIMI . . . IME (the factors of I change nothing)

= E†MEE†ME . . .E†ME (using EE† = I)

= (E†ME)r = (Mdiag)r,

which is diagonal. The same will be true for D(M), which is a linear combination of powers
of M. Thus,

E†D(M)E = D(Mdiag) =


D(λ1) 0 . . . 0

0 D(λ2) . . . 0
...

...
. . .

...
0 0 . . . D(λN)

 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ≡ 0 ; (3)

the right-hand side is zero because D(λi) = 0 for each eigenvalue λi.

Finally, we apply the inverse transformation to each side of (3) to obtain

D(M) = E0E† = 0,

which is the required result.

‡‡ For any matrix that can be diagonalized by a similarity transformation Mdiag = S−1MS, the
same argument goes through with E replaced by S and E† replaced by S−1.


