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PHYS20672 Complex Variables and Vector Spaces:
Solutions 6, Part 2

(i) This is similar to Q.55, but here we use the Gram-Schmidt process to construct an
orthonormal set of N — 1 vectors {|e;),j # i} from the vectors {|a;),j # i}. We then use

these to construct
|a;) = <|az Z le5)(ejla:) )
JFi

which is orthogonal to all of the vectors |e;) and hence to all of the vectors |a;) with j # i.
The coefficient C; is chosen so that

(i) = Ci(Jai? = D" aile,)?) = 1.
JFi

[To avoid a possible source of confusion, note that the sets of vectors {|e;), j # ¢} would
be different for each 7, so this would not, in practice, be an efficient process for calculating
the set of reciprocal vectors.]

(ii) If |b) = >_; bjlai), then
al|b Zb al\aj Zb]52] :bz
J
Using this (and the definition of the outer product) we find

(Z Iai><ai|)|b> = Z |a;) (@;]b) = Zbimi) = [b)

so we can see that 3. |a;)(d;| has the same effect as 1.

(iii) Using the resolution of unity from part (ii), we find:

Az/ﬁzA(Z\a, al> Z|b

i

A =141 = (Y latad JA(D laj);]) = - fao) (@il Alas) G |

J 2

and

(iv) Ala;) = |b;). If the vectors {|b;)} are linearly independent, we can construct the reciprocal
vectors, {|b;)}. [Of course, if they are not independent, the construction fails at this point!]
Then ). |b;)(b;] = 1, so that

S Il =3 Al = A (3 la(bi) = 1.
7 ) 7 :
A-1

from which we can read off A=,

The sum of two linear operators, C = A+ B, and the product with a scalar, D = \A, were
both defined in lectures; C and D are linear operators, so the set is closed under addition and
under multiplication by a scalar.

The zero operator was defined by 0la) = |0) for all |a) € V. It is clearly linear, since O0(A|b)+p|c))
and A0|b) + p0|c) both give |0)
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The additive inverse (—A) can be defined as (—1)A. It has the required property

(A+(-1)A)|a) = A |> < >A|>

"ot -

this holds for any |a), so (A + (—1)121) = (0. Thus the set of linear operators on V is a vector
space.

The proof follows a similar pattern to the one for Hermitian operators:

Suppose that |v;) and |v;) are eigenvectors of the unitary operator U,
Ulv) = wilv)) and  Ulv;) = w;lv;).

We need to investigate the orthogonahty (or otherwise) of the eigenvectors, whilst also making
use of the property UTU = 1. This motivates us to consider

(v3lvs) = (3| UTTv3) = wilw;| U [og), (1)
where we have used the fact that |v;) is an eigenvector of . Now, on the right-hand side of
Eq. (1) we have

(v;|U vy = (v;]Ulv;)  (definition of adjoint)

|
— w;(vilv;)  (since |v;) is an eigenvector of U)
{

Inserting this result into (1) we find
(vilvi) = wioj{u;|vi), or (1 —wiw;)(vjlvi) =0. (2)

For the last equation to be true, one of the factors (1 — w;w;) and (v;|v;) must vanish.

If we take ¢ = j, the factor (v;Jv;) # 0, so we can deduce that |w;|* = 1; thus, |w;| = 1. This
will hold for every eigenvalue.

If instead we have i # j and w; # wj;, then, after multiplying each side by @w;, we find w;w; #
|lw;|%; but |w;|? = 1, so the factor (1 — w;w;) in (2) cannot be zero. Thus, (v;|v;) must be zero.

59. Checks of unitarity and Hermiticity: don’t attempt to do them ‘by inspection’!

(i) We have

Nt )
0 —2 0 —2 ..
(z’ 0) _<z' 0) = Hermitian;
—i\" (0 =i\ [0 =i\ [0 =i\ (10 . nitar
o) \i o)/ \i oJ\i o)/ \o1 unaty.

An equivalent test of unitarity is to check whether or not the columns are mutually
orthogonal unit vectors.

jen)

~.

(ii) Same procedure:

0= Y#(1 ) =
EDED-C 36 e



(iii) Hermitian, but not unitary (the columns are not orthogonal unit vectors).
(iv) Neither.

Eigenvalues and eigenvectors: the procedure should be familiar from first year, so we give
the details in only two cases.

R . (0 = ur _ (w o ur (0
(i) Eigenvalue equation: (2 O) (UQ) =pu (ug) , or ( ; _M) (Ug) = (O)

Setting the determinant of the matrix of coefficients to zero gives pu? — 1 = 0, so the
eigenvalue are p; = 1 and ps = —1. As expected for an Hermitian matrix, the eigenvalues
are real; and, as expected for a unitary matrix, they have unit modulus.

To find the eigenvectors, substitute p; and ps into the eigenvalue equation:

E.g., for yy = 1, the first row of (_zl _i) (Zl> = (8) tells us that —u; — iug = 0, or
- 2

ug = tuy. [The second row gives a useful check: iu; — us = 0, which is the same result.]

1
Hence, after normalization, ) 1 .
Us V2 \u

[When comparing with your own answers, remember that the overall phase of an eigen-
vector is not relevant, so that a result that is different by (say) a factor of 7 is still correct.]

. . . . .1 1
Similarly, for eigenvalue ps = —1, a normalized eigenvector is — ( )

V2 \—i
L\ /1 . N . -
Orthogonality: 3 ; i) =3 (1 —i) )= 1(1+ (—i)?) =0, as expected.

(ii) The eigenvalues satisfy > —i = 0, so 12 = +£(1 +i)/v/2 = £e™/*. They have unit
modulus, as expected for the eigenvalues of a unitary matrix.
1

i /4> . They are orthogonal, as expected for

The corresponding eigenvectors are —
5 V2 (

eigenvectors of a unitary matrix.

(iii) The characteristic equation is u? —5u+4 = (u—1)(u—4) =0, s0 uy; = 1 and py = 4.

. 1 [1+ 2> 1 < 1 )
The eigenvectors are — for u =1 and — .| for © = 4. They are orthog-

onal, as expected for eigenvectors of an Hermitian matrix.

iv) The characteristic equation is (a — p)?> = 0, so the root ;1 = a occurs twice. Insertin
I 1 g
it = a into the eigenvalue equation we get

a—a b ur) _ (bug) (0O
0 a—a)\uy) L O /) \0O)°
Since b # 0, this requires us = 0; u; can be anything other than zero, so take u; = 1.

Thus, there is only one eigenvector: ((1))

Comments: The matrix is neither Hermitian nor unitary, so there is no reason to expect
there to be two linearly independent eigenvectors corresponding to the repeated eigenvalue
— though there might have been. In this example there was only one. However, it is still
true that the sum of the roots, a + a = 2a, equals the trace of the matrix, and their
product, a?, equals the determinant.

60. Eigenvalues: With ¢ = cosf and s = sin 6, the eigenvalue equation is

¢ —s 0 T T
s ¢ 0 yl=wlvy
0 0 1 z z
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The eigenvalue w satisfies the characteristic equation

(1-w)((c—w)*+s*) =0,
whose solutions are wy = 1, wy = ¢ +is = € and w3 = e~ .

The matrix is real and orthogonal, which is a special case of unitary; as expected, the eigenvalues
all have unit modulus.

Eigenvectors: We assume below that 6 # 0 or 7.

0
wi; = 1: A normalized eigenvector is vi = | 0 |, either by inspection or by noting that the
1
rotation through angle 6 leaves the z axis invariant.
wy = e
—is —S 0 T 0
s  —is 0 y] =10
0 0 1—-c—us z 0
From the third row we find z = 0. From either the first or second row we find y = —ix, so a
1
1
normalized eigenvector is vo = — | —i
V2 1\
1 1
w3 = e~ Similarly, vs = E (z)
1
It is easy to see that vi'vy = vi'vy = 0 and that vofvg =1 (1 1 O) 1] = %(1 —1+0)=0.
0

(a) Q.56 showed how to construct the identity operator 1 using any linearly independent set
of vectors and their reciprocals. Here we take those vectors to be the eigenvectors of A.

We have B ) )
— Al = A(Z ) (i ) = > A sl = D7 Al i

(b) Left eigenvectors: Using the representation of A derived in part (a),

(5| A = “J‘<Z)"u‘ u’)
_ Z)\iéﬂﬁm = A, (i

the factor dj; picks out the term ¢ = j from the sum.

(¢) 1f The matrix of eigenvectors, S, has elements Sj, = (e;|ug). We can verify that its inverse
has elements S™1;; = (i;]e;):

D 87N = > (ihile;){ejlu) = (its] Lur) = 6,
J J
in which we spotted a resolution of unity and made use of the definition of the recip-

rocal vectors to get the final §;,. We notice that row ¢ of matrix S~! is the row-vector
representing (i;| ; using the terminology of part (b), it is a left eigenvector of matrix A.
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If A = S'AS, its elements are

A/ij = Z<di|ek>Akl<€l|uj>
Z ;| ex) €k|A|€l><€l|“J>

k,l
= (1AL u;) = (| Aluj) = (| \jlus) = Ny s

L.e., the matrix A’ has elements \; along the diagonal and is zero elsewhere.

The method was sketched in the question. We have det(U') = det(UT) = det U. For any two
N x N matrices A and B, det(AB) = det A det B. Then, using | = U'U, we have detl = 1
and hence det(UTU) = det Udet U = |det U|?> = 1.

This result also follows from the fact that det U equals the product of its eigenvalues, all of
which have unit modulus in the case of a unitary matrix; see Q.58.
A unitary transformation does not alter the determinant or the trace of a matrix:
det(U'MU) = det(U") det M det U
= |det U|* det M
=detM (see Q.62 for |det U|* = 1);

and

Tr(U'MU) = Tr(MUU')  (cyclic property of the trace)
= Tr(MI) (since UUT = 1)
=Tr M.

Now, in a representation in which M is diagonal,

D S O | e 0 ... 0

Ao ... O . 0 e ... 0

Mdiag — and exp(M¥%®) = ST .

0 0 e >\N 0 0 Ce €>\N
so that . .
det[exp(MI8)] = M e*2 ... v = el Aet AN — oxep [Ty (MY,

But the determinant and trace are unaffected by the unitary transformation, so det[exp M| =
exp[Tr M].

1T The argument is easily extended to any matrix that can be diagonalized by a similarity
transformation, M4# = S7IMS. As before, the trace and determinant are unaltered by
diagonalization:

Tr(MY#8) = Tr(S!MS) = Tr(MSS™) = Tr(MI) = Tr M
and .
det(M?8) = det(S™") det M det S = det M,
since det(S™') = 1/det S.

(1111 Aside: What if we don’t know that the matrix can be diagonalized? In the general case
one can consider the function f(¢) = det(exp[tM]), which satisfies the differential equation

df

=My
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If you want to derive this, first show that f(t 4+ 0t) = f(dt)f(¢); then note that f(dt) =
det[l + 6t M + O(6t?)] and expand the determinant to obtain f(§t) = 1+ (Tr M)dt + O(6¢?).

The differential equation can be integrated, using the boundary condition f(0) = 1, to give
f(t) = detlexp(tM)] = ! ™M

Setting t = 1 gives the required formula.]

We define

N

D) =D e\,

r=0

and the corresponding matrix
N
DM)=> "¢;M",  where M’ =1.
r=0

If M is Hermitian or unitary, it can be diagonalized by a unitary transformation M4#¢ = ETME,
where the columns of E are the eigenvectors of M. We can diagonalize D(M) by applying the
same transformation. This should be obvious to you from the fact that an eigenvector of M
is also an eigenvector of D(M); alternatively, we can perform the transformation explicitly on
each of the terms in D(M). For example, M" becomes

E'M"E = E'MIMI ... IME (the factors of | change nothing)
= E'MEE'ME.. . E'ME  (using EE' =)
_ (ETME)T _ (Mdiag)r’

which is diagonal. The same will be true for D(M), which is a linear combination of powers
of M. Thus,

D(\) 0 0 00 0

N 0 D\ ... 0 00 ... 0
EIDME=DM™)=| 7 =] =0 B

0 0 ... D) 00 ...0

the right-hand side is zero because D()\;) = 0 for each eigenvalue ;.

Finally, we apply the inverse transformation to each side of (3) to obtain
D(M) = EOE" = 0,

which is the required result.

11 For any matrix that can be diagonalized by a similarity transformation M%% = S™'MS, the
same argument goes through with E replaced by S and E' replaced by S™.



