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PHYS20672 Complex Variables and Vector Spaces:
Solutions 6, Part 1

Closure under addition:
(CLl,CLQ, ...,CLn> + (bl,bg, 7bn) = (a1 +b1,a2 +b2,...,an+bn) € (O
Addition of complex numbers is commutative and associative, so addition of these vectors in

C™ will have the same properties.

Closure under multiplication by a scalar A (i.e., a complex number):
May,ag, ... a,) = (Mag, Aag, ..., Aa,) € C".

Again, associativity, commutativity, and distributivity are inherited from the complex numbers.
The zero vector: |0) = (0,0, ...,0) € C"

Additive inverse: If |a) = (aq,aq, ..., a,), then |—a) = (—ay, —aq, ..., —a,) is the vector in C"
that satisfies |a) + |—a) = |0).

It should be clear that the process of verification is usually very simple, so we abbreviate it
even further below.

(i) If fi(z) and fo(x) are real functions of x that satisfy f1(0) = fi1(1) = f2(0) = fo(1) =0,
then for real A\ and p, the function g(x) = Afi(x) + ufz(x) also satisfies the boundary
conditions. This verifies closure under vector addition and under multiplication by a
scalar.

(i) Similarly, if f1(0) = fi(1) and f2(0) = fo(1), then g(z) = Afi(z) + pfo(z) satisfies
9(0) = g(1).

(iii) However, if we impose the condition f(0) = f2(0) = 1, we lose the properties of closure
under vector addition and under multiplication by a scalar. For example, if g(z) =
fi(z) + fa(x), then ¢g(0) = 2, which violates the boundary condition. Thus, we no longer
have a vector space.

If afa) + 5]b) + v|c) = |0), then

(20, 3a + B, —a + 28 — 5v) = (0,0,0).

Thus 2a = 0, so « = 0. Then 3a+ 8 = 0 implies 8 = 0 (since « = 0). Then —a+28 -5y =0

implies v = 0 (since a = § = 0).

So the only solution of aja) + 5|b) +7v|c) = |0) is a = f =~ = 0: |a), |b) and |c) are therefore

linearly independent.

If ala) + B|b) + v|c) = (2,—3,1), then 2a = 2, 3+ f = —3 and —a + 20 — 5y = 1. Solving

these equations in turn we find a =1, § = —6 and v = —%.

If a(X) = ag+ a1 X +aa X%+ a3 X3 and b(X) = by + b1 X + b X2+ b3 X3, then Aa(X)+ ub(X) =

(Aag + pbo) + (Aar + 1) X + (Aag + pbe) X + (Aag + ubs) X2 is also a polynomial of degree not
exceeding three, so the set is closed under addition and under multiplication by a scalar.

The ‘polynomial’ 0 correctly satisfies a(x) +0 = 0+ a(x) = a(z).

The additive inverse of 1 + iX + (2 + 37)X?® can be obtained by reversing the signs of the
coefficients: —1 —iX — (2 + 34) X?.
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Any polynomial of degree up to 3 is a linear combination of the monomials 1, X, X? and X3,
all of which belong to the set, and none of which can be expressed as a linear combination of
the others. Thus, {1, X, X? X3} is a possible basis. The dimension of the vector space is 4.

The case of cubics: The set of cubics is not closed under addition. For example, take a(X) =
1+ X+ X%and b(X) = X + X? — X3 Then a(X) +b(X) =1+ 2X + X? is not a cubic in X.

It is easy to verify that the closure axioms are satisfied, since adding two rational numbers
gives a rational number, and multiplying two rationals also gives a rational.

We note that the real number 0 leaves every vector unchanged under addition, so it is a zero
vector.

If = p+ ¢v/2, with rational p and ¢, then —2 = (—p) + (—q)\/§ is also in the set, and it
satisfies « + (—xz) = 0.

Basis vectors: A plausible basis is {1, v/2}, suggesting that the dimension of the vector space
is 2, but we should check that 1 and v/2 are linearly independent. First we note that if

al + 5vV2 =0, (1)

with nonzero coefficients o and 3, then —a/3 = v/2. But the last equation is an impossibility,
if & and 3 are both rational, because —a/f is rational while v/2 is irrational. Thus, the only
solution of Eq. (1) is a = 8 = 0, which shows that 1 and v/2 are linearly independent.

Uniqueness of the zero vector: Suppose that there is a second zero vector, 0 = al + v/2. For
any = = p + ¢v/2 it needs to satisfy the equation

r+0 =2 or (p+a)l+(g+B)V2=pl+qV2.

We have shown that 1 and v/2 are linearly independent, so the last equation requires p+ o = p
and g + 8 = ¢; i.e., it requires « = § = 0. Thus, 0’ is identical to 0.

(i) The equation |a) + |0") = |a) must hold, in particular, for |a) = |0):
10) +10°) = [0). (2)

But on the left-hand side of Eq. (2), |0) +|0’) can be replaced by |0’) (using the fact that
|0) is a zero vector). Thus, (2) becomes

0) = |0).
(ii) Let the supposed alternative inverse be |~a). Then
~a) +Ja) = [0)
Adding |—a) to each side (and using the associativity of addition) gives
[~a) + (la) +|=a)) = |—a).

But (|a) + |—a)) = |0), so we find that |~a) = |—a).

(iii) From the axioms for multiplication by a scalar,
la) + 0la) = 1]a) + 0la) = (1 + 0)|a) = 1|a) = |a).

Adding |—a) to each side (and using |a) + |—a) = |0)) then gives 0|a) = |0).



50. The results (and the amount of work involved) depend on the order in which we take the
vectors.

E.g., if we take

|CL1> = —bk

|CL2> :j + 2k

las) = 2i + 3j — k,
we first find |e;) = |a1)/|a1| = —k. (Of course, +k would do just as well. The same goes for
the other choices of sign made later on.)

Next we construct a vector orthogonal to |e;):

lea) = Ca(|az) — ler){e1]as)) = Caj.

Because we want |es) to be a unit vector, we choose Cy = 1, which gives |es) = j.

Continuing this procedure, we construct a vector orthogonal to |e;) and |es):

les) = Cs(las) — lex)(exlas) — |e2)(e2|as)) = C5(2i).
Choosing C3 = § gives us a unit vector: |es) = i.

51. (i) If either vector is zero, both sides are zero, so there is nothing to prove: we simply have
an equality in this case.

If |b) # |0), we can define |¢) = |a) — A|b), where A = (b|a)/{(b|b). Then
{cle) = (cla) = A(c|b)
= (a|a) — X{bla) — Xa|b) + A\(b|b)

ey lalpl?
= {ala) — -

after some simplification in which we mustn’t forget that (a|b) = (b|a).
But (c|c¢) > 0, so we have

|{alb)|*
(ala) — o) > 0,

giving
[{alb)[* < {ala)(b|b) = |al*[b]*.
On taking the positive square root of each side, we find |{(a|b)| < |a||b]|.
(ii) If |¢) = |a) + |b), then
lel* = {cle) = lal” + [b]* + (alb) + (bla).
But we can write (a|b) = X + Y, where X, Y € R. So
(alby + (bla) =2X

<2|1X| =2vX?

<2vVX?24Y?

= 2|(alb)| < 2[al[b],

where Schwarz’s inequality is used in the last step. Thus

lel* < lal* + [ + 2lal[b] = (la] + [b]);



taking the positive square root of each side gives |c| < |a| + |b].

Last part: Write |a) = |c) 4+ |—b). Then the triangle inequality gives |a| < |¢|+|(—b)|. But
the norm of |—b) is identical to the norm of |b), so we have |a| < |c|+ 0], or |a| —|b] < |¢].
Similarly, we can show that |[b] — |a| < |¢|. Of these last two inequalities, one must have
a left-hand side that is nonnegative and equal to |(Ja| — |b])|. Thus we have

|(la] = [6D)] < e].

52. To reduce the typing, I'll use a representation in which

e1) —> (é) ea) —> ((D

Then
3 1
la) — (_72.) and |b) — <2> :
giving
> = (=3i 7i) (_3;@) =9 449 = 58,
) 1
2= (1 2) (2) —1id=5,
(alb) = (—3i 74) (;) = 11i.
Then
B 1+ 30
o =lap+ 18— (,73).
for which

c|? = |1+ 3i]* + |2 — 7i|]* = 63.

Schwarz’s inequality: |(a|b)| = 11 and |a||b] = V58 x v/5 ~ 17.0, so that the inequality
|{a|b)| < |a||b| is satisfied.

Triangle inequality: |c| = V63 ~ 7.94 and |a| + |b| = v/58 + /5 ~ 9.85. The inequality
le| < |a| + |b] is satisfied.

53. (i) To avoid confusion over suffixes, we use j as the summation variable in |b) = >, bjle;).
To calculate (e;|b) we use the fact that the inner product is a linear function of its second

argument, |b):
(eilb) =) bjleiles) =D b by =b;;
j j

in the second sum over j, the presence of J;; ensures that the only nonzero term is the
one with j =i.
We can do the same job for |a) to show that a; = (e;|a). Taking the complex conjugate
gives @; = (e;|la) = (ale;).

(i) We have (alb) = > .(ale;)b;. But, from the last line of part (i), (ale;) = @;. Hence

(alb) = Zz‘a_ibi‘



54. We write the polynomials as

pO(I) = Qo,
p(z) = by + biz,

pa(T) = co + 1 + 62$2,

in which the coefficients are all real. Then

(or —1/v2);

1
1
{Polpo) :/1|ao|2dx:2a§:1 #aozﬁ
1 1
<po|p1>=E (bo + byz) dz = V2by = 0 =by=0;

-1

1
(p1lp1) = / (hix)*dz =202/3 =1 = b =+/3/2;

1
3 [ ) 5 3 2
(p1|p2) = 5/ (cor + c12” + cox®) dx = §X561:O = =0;
1

(polp2) = %/_11(00 + c2?) dz = %(CO +¢2/3)=0 = po() = co(1 — 327) ;

1
<p2|p2>=cg/ (1—3x2)2dx:8cg/5:1 = cop =+/5/8.

1

So the final results are py(z) = \/Li ,pi(x) = \/gx and po(z) = /3 (1 — 32?). Apart from the

normalization, these are the first three Legendre polynomials.
55. One way to the solve the problem is to use the Gram—Schmidt process to construct an or-
thonormal basis for V.

Starting with |e;) = |a)/|a|, the remaining N — 1 unit vectors {|e;),72 =2, 3, ..., N} span W:
any linear combination [b) = S b;le;) satisfies (a[b) = 0.



