
PHYS20672 Complex Variables and Vector Spaces:
Solutions 6, Part 1

44. Closure under addition:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) ∈ Cn.

Addition of complex numbers is commutative and associative, so addition of these vectors in
Cn will have the same properties.

Closure under multiplication by a scalar λ (i.e., a complex number):

λ(a1, a2, . . . , an) = (λa1, λa2, . . . , λan) ∈ Cn.

Again, associativity, commutativity, and distributivity are inherited from the complex numbers.

The zero vector : |0〉 = (0, 0, . . . , 0) ∈ Cn

Additive inverse: If |a〉 = (a1, a2, . . . , an), then |−a〉 = (−a1,−a2, . . . ,−an) is the vector in Cn

that satisfies |a〉+ |−a〉 = |0〉.
It should be clear that the process of verification is usually very simple, so we abbreviate it
even further below.

45. (i) If f1(x) and f2(x) are real functions of x that satisfy f1(0) = f1(1) = f2(0) = f2(1) = 0,
then for real λ and µ, the function g(x) = λf1(x) + µf2(x) also satisfies the boundary
conditions. This verifies closure under vector addition and under multiplication by a
scalar.

(ii) Similarly, if f1(0) = f1(1) and f2(0) = f2(1), then g(x) = λf1(x) + µf2(x) satisfies
g(0) = g(1).

(iii) However, if we impose the condition f1(0) = f2(0) = 1, we lose the properties of closure
under vector addition and under multiplication by a scalar. For example, if g(x) =
f1(x) + f2(x), then g(0) = 2, which violates the boundary condition. Thus, we no longer
have a vector space.

46. If α|a〉+ β|b〉+ γ|c〉 = |0〉, then

(2α, 3α + β,−α + 2β − 5γ) = (0, 0, 0).

Thus 2α = 0, so α = 0. Then 3α+ β = 0 implies β = 0 (since α = 0). Then −α+ 2β − 5γ = 0
implies γ = 0 (since α = β = 0).

So the only solution of α|a〉+ β|b〉+ γ|c〉 = |0〉 is α = β = γ = 0: |a〉, |b〉 and |c〉 are therefore
linearly independent.

If α|a〉 + β|b〉 + γ|c〉 = (2,−3, 1), then 2α = 2, 3α + β = −3 and −α + 2β − 5γ = 1. Solving
these equations in turn we find α = 1, β = −6 and γ = −14

5
.

47. If a(X) = a0 +a1X+a2X
2 +a3X

3 and b(X) = b0 + b1X+ b2X
2 + b3X

3, then λa(X) +µb(X) =
(λa0 +µb0) + (λa1 +µb1)X + (λa2 +µb2)X

2 + (λa3 +µb3)X
2 is also a polynomial of degree not

exceeding three, so the set is closed under addition and under multiplication by a scalar.

The ‘polynomial’ 0 correctly satisfies a(x) + 0 = 0 + a(x) = a(x).

The additive inverse of 1 + iX + (2 + 3i)X3 can be obtained by reversing the signs of the
coefficients: −1− iX − (2 + 3i)X3.



Any polynomial of degree up to 3 is a linear combination of the monomials 1, X, X2 and X3,
all of which belong to the set, and none of which can be expressed as a linear combination of
the others. Thus, {1, X,X2, X3} is a possible basis. The dimension of the vector space is 4.

The case of cubics : The set of cubics is not closed under addition. For example, take a(X) =
1 +X +X3 and b(X) = X +X2−X3. Then a(X) + b(X) = 1 + 2X +X2 is not a cubic in X.

48. It is easy to verify that the closure axioms are satisfied, since adding two rational numbers
gives a rational number, and multiplying two rationals also gives a rational.

We note that the real number 0 leaves every vector unchanged under addition, so it is a zero
vector.

If x = p + q
√

2, with rational p and q, then −x ≡ (−p) + (−q)
√

2 is also in the set, and it
satisfies x+ (−x) = 0.

Basis vectors : A plausible basis is {1,
√

2}, suggesting that the dimension of the vector space
is 2, but we should check that 1 and

√
2 are linearly independent. First we note that if

α1 + β
√

2 = 0, (1)

with nonzero coefficients α and β, then −α/β =
√

2. But the last equation is an impossibility,
if α and β are both rational, because −α/β is rational while

√
2 is irrational. Thus, the only

solution of Eq. (1) is α = β = 0, which shows that 1 and
√

2 are linearly independent.

Uniqueness of the zero vector : Suppose that there is a second zero vector, 0′ = α1 + β
√

2. For
any x = p+ q

√
2 it needs to satisfy the equation

x+ 0′ = x, or (p+ α)1 + (q + β)
√

2 = p1 + q
√

2.

We have shown that 1 and
√

2 are linearly independent, so the last equation requires p+α = p
and q + β = q; i.e., it requires α = β = 0. Thus, 0′ is identical to 0.

49. (i) The equation |a〉+ |0′〉 = |a〉 must hold, in particular, for |a〉 = |0〉:

|0〉+ |0′〉 = |0〉. (2)

But on the left-hand side of Eq. (2), |0〉+ |0′〉 can be replaced by |0′〉 (using the fact that
|0〉 is a zero vector). Thus, (2) becomes

|0′〉 = |0〉.

(ii) Let the supposed alternative inverse be |∼a〉. Then

|∼a〉+ |a〉 = |0〉.

Adding |−a〉 to each side (and using the associativity of addition) gives

|∼a〉+ (|a〉+ |−a〉) = |−a〉.

But (|a〉+ |−a〉) = |0〉, so we find that |∼a〉 = |−a〉.
(iii) From the axioms for multiplication by a scalar,

|a〉+ 0|a〉 = 1|a〉+ 0|a〉 = (1 + 0)|a〉 = 1|a〉 = |a〉.

Adding |−a〉 to each side (and using |a〉+ |−a〉 = |0〉) then gives 0|a〉 = |0〉.



50. The results (and the amount of work involved) depend on the order in which we take the
vectors.

E.g., if we take

|a1〉 = −5k

|a2〉 = j + 2k

|a3〉 = 2i + 3j− k,

we first find |e1〉 = |a1〉/|a1| = −k. (Of course, +k would do just as well. The same goes for
the other choices of sign made later on.)

Next we construct a vector orthogonal to |e1〉:

|e2〉 = C2(|a2〉 − |e1〉〈e1|a2〉) = C2j.

Because we want |e2〉 to be a unit vector, we choose C2 = 1, which gives |e2〉 = j.

Continuing this procedure, we construct a vector orthogonal to |e1〉 and |e2〉:

|e3〉 = C3(|a3〉 − |e1〉〈e1|a3〉 − |e2〉〈e2|a3〉) = C3(2i).

Choosing C3 = 1
2

gives us a unit vector: |e3〉 = i.

51. (i) If either vector is zero, both sides are zero, so there is nothing to prove: we simply have
an equality in this case.

If |b〉 6= |0〉, we can define |c〉 = |a〉 − λ|b〉, where λ = 〈b|a〉/〈b|b〉. Then

〈c|c〉 = 〈c|a〉 − λ〈c|b〉
= 〈a|a〉 − λ〈b|a〉 − λ〈a|b〉+ λλ〈b|b〉

= 〈a|a〉 − |〈a|b〉|
2

〈b|b〉
,

after some simplification in which we mustn’t forget that 〈a|b〉 = 〈b|a〉.
But 〈c|c〉 ≥ 0, so we have

〈a|a〉 − |〈a|b〉|
2

〈b|b〉
≥ 0,

giving
|〈a|b〉|2 ≤ 〈a|a〉〈b|b〉 = |a|2|b|2.

On taking the positive square root of each side, we find |〈a|b〉| ≤ |a||b|.
(ii) If |c〉 = |a〉+ |b〉, then

|c|2 = 〈c|c〉 = |a|2 + |b|2 + 〈a|b〉+ 〈b|a〉.

But we can write 〈a|b〉 = X + iY , where X, Y ∈ R. So

〈a|b〉+ 〈b|a〉 = 2X

≤ 2|X| = 2
√
X2

≤ 2
√
X2 + Y 2

= 2|〈a|b〉| ≤ 2|a||b|,

where Schwarz’s inequality is used in the last step. Thus

|c|2 ≤ |a|2 + |b|2 + 2|a||b| = (|a|+ |b|)2 ;



taking the positive square root of each side gives |c| ≤ |a|+ |b|.

Last part : Write |a〉 = |c〉+ |−b〉. Then the triangle inequality gives |a| ≤ |c|+ |(−b)|. But
the norm of |−b〉 is identical to the norm of |b〉, so we have |a| ≤ |c|+ |b|, or |a| − |b| ≤ |c|.
Similarly, we can show that |b| − |a| ≤ |c|. Of these last two inequalities, one must have
a left-hand side that is nonnegative and equal to |(|a| − |b|)|. Thus we have

|(|a| − |b|)| ≤ |c|.

52. To reduce the typing, I’ll use a representation in which

|e1〉 −→
(

1
0

)
, |e2〉 −→

(
0
1

)
.

Then

|a〉 −→
(

3i
−7i

)
and |b〉 −→

(
1
2

)
,

giving

|a|2 =
(
−3i 7i

)( 3i
−7i

)
= 9 + 49 = 58,

|b|2 =
(
1 2

)(1
2

)
= 1 + 4 = 5,

〈a|b〉 =
(
−3i 7i

)(1
2

)
= 11i.

Then

|c〉 = |a〉+ |b〉 −→
(

1 + 3i
2− 7i

)
,

for which
|c|2 = |1 + 3i|2 + |2− 7i|2 = 63.

Schwarz’s inequality : |〈a|b〉| = 11 and |a||b| =
√

58 ×
√

5 ' 17.0, so that the inequality
|〈a|b〉| ≤ |a||b| is satisfied.

Triangle inequality : |c| =
√

63 ' 7.94 and |a| + |b| =
√

58 +
√

5 ' 9.85. The inequality
|c| ≤ |a|+ |b| is satisfied.

53. (i) To avoid confusion over suffixes, we use j as the summation variable in |b〉 =
∑

j bj|ej〉.
To calculate 〈ei|b〉 we use the fact that the inner product is a linear function of its second
argument, |b〉:

〈ei|b〉 =
∑
j

bj〈ei|ej〉 =
∑
j

bj δij = bi ;

in the second sum over j, the presence of δij ensures that the only nonzero term is the
one with j = i.

We can do the same job for |a〉 to show that ai = 〈ei|a〉. Taking the complex conjugate
gives ai = 〈ei|a〉 = 〈a|ei〉.

(ii) We have 〈a|b〉 =
∑

i〈a|ei〉bi. But, from the last line of part (i), 〈a|ei〉 = ai. Hence
〈a|b〉 =

∑
i ai bi.



54. We write the polynomials as

p0(x) = a0,

p1(x) = b0 + b1x,

p2(x) = c0 + c1x+ c2x
2,

in which the coefficients are all real. Then

〈p0|p0〉 =

∫ 1

−1
|a0|2 dx = 2a20 = 1 ⇒ a0 =

1√
2

(or −1/
√

2) ;

〈p0|p1〉 =
1√
2

∫ 1

−1
(b0 + b1x) dx =

√
2 b0 = 0 ⇒ b0 = 0 ;

〈p1|p1〉 =

∫ 1

−1
(b1x)2 dx = 2b21/3 = 1 ⇒ b1 =

√
3/2 ;

〈p1|p2〉 =

√
3

2

∫ 1

−1
(c0x+ c1x

2 + c2x
3) dx =

√
3

2
× 2

3
c1 = 0 ⇒ c1 = 0 ;

〈p0|p2〉 =
1√
2

∫ 1

−1
(c0 + c2x

2) dx =
2√
2

(c0 + c2/3) = 0 ⇒ p2(x) = c0(1− 3x2) ;

〈p2|p2〉 = c20

∫ 1

−1
(1− 3x2)2 dx = 8c20/5 = 1 ⇒ c0 =

√
5/8 .

So the final results are p0(x) = 1√
2

, p1(x) =
√

3
2
x and p2(x) =

√
5
8

(1− 3x2) . Apart from the

normalization, these are the first three Legendre polynomials.

55. One way to the solve the problem is to use the Gram–Schmidt process to construct an or-
thonormal basis for VN .

Starting with |e1〉 = |a〉/|a|, the remaining N − 1 unit vectors {|ei〉, i = 2, 3, . . . , N} span W:
any linear combination |b〉 =

∑N
i=2 bi|ei〉 satisfies 〈a|b〉 = 0.


