
PHYS20672 Complex Variables and Vector Spaces: Examples 7

Lower priority: ‡. Lowest priority: ‡‡.

65. The operator K̂ is defined as follows by its action on functions of x:

〈x|K̂|g〉 = −idg(x)

dx
,

where g(x) ≡ 〈x|g〉. Show that K̂ is Hermitian on the space of functions that vanish for
x→ ±∞. Find the eigenvalues and eigenfunctions of K̂, and show that these eigenfunc-
tions are not square-integrable.

66. Show that K̂, defined as above, is Hermitian on the space of functions g(x) defined on
the interval [−π, π] which satisfy the periodic boundary condition g(−π) = g(π). Find
the eigenvalues and eigenfunctions of K̂. Normalize the eigenfunctions to unity.

[In this question, unlike in Q.65, the eigenfunctions of K̂ form a discrete set, and are
normalizable. This illustrates the important part played by the choice of domain and
boundary conditions.]

67. Kets |f〉 and |g〉 correspond to periodic functions defined as in Q.66 and {|en〉} correspond
to the normalized eigenfunctions of K̂. If |f〉 =

∑
n fn|en〉, show that

(i) fn = 〈en|f〉 (ii) 〈f |g〉 =
∑
n

fn gn (iii) 〈f |f〉 =
∑
n

|fn|2.

68. Show that f(x) (= 〈x|f〉) is the inverse Fourier transform of f̃(k) = 〈ek|f〉, where, as in
lectures, 〈x|ek〉 = eikx/

√
2π. (You can do this by inserting an appropriate resolution of

unity between 〈x| and |f〉.)

69. ‡ Let un(x) be a normalized harmonic oscillator eigenfunction, i.e., the function of x that
satisfies

−d2un
dx2

+ x2un = (2n+ 1)un

and 〈un|un〉 = 1. The solution for each n is unique, up to a constant factor of unit
modulus. By transforming the differential equation to the k-representation, show that
ũn(k) satisfies

k2ũn −
d2ũn
dk2

= (2n+ 1)ũn.

Use this result to argue that ũn(s) = Cun(s), where |C| = 1. That is, the harmonic
oscillator eigenfunctions and their Fourier transforms are the same, up to factors of unit
modulus.

The next problem shows that it is surprisingly easy to construct other functions with the
property of being equal to their own Fourier transform, up to a factor C, and that there
are only four possible values for C.



70. An operator F̂ is defined as follows by its action on square-integrable functions g(x):

〈x|F̂ |g〉 =
1√
2π

∫ ∞
−∞

e−ixx
′
g(x′) dx′.

[Yes, it’s just Fourier transformation, but viewed here as an active transformation: F̂
takes a function of x and converts it to a new function of x.]

(i) Show that the operator F̂ is unitary. You can do this by verifying that F̂ preserves
the scalar product between arbitrary kets |f〉 and |g〉.
[This result is just Parseval’s theorem for Fourier transforms, so you can consult
your notes and change the notation slightly.]

(ii) Show that F̂ 4 = 1̂; i.e., show that if you Fourier-transform a function four times,
you get back the original function.

(iii) Use the eigenvalue equation F̂ |u〉 = ω|u〉 and the result of part (ii) to prove that the
eigenvalues of F̂ are ω = 1, i, −1 and −i.
[This illustrates a general principle: if F̂ satisfies an algebraic operator equation,
such as F̂ 4 = 1̂, its eigenvalues satisfy “the same” equation, in this case ω4 = 1.
Compare this with the result stated in Q.64 on the last sheet.]

(iv) Prove that, for arbitrary |g〉, the vector |u〉 defined by

|u〉 = 1
4

(
1̂ + F̂ + F̂ 2 + F̂ 3

)
|g〉

is an eigenvector of F̂ with eigenvalue 1. Thus, the function u(x) = 〈x|u〉 is equal
to its own Fourier transform.

(v) ‡ Show that the operator

P̂ 1 = 1
4

(
1̂ + F̂ + F̂ 2 + F̂ 3

)
is a projection operator, i.e., that it satisfies P̂ 2

1 = P̂ 1. It projects functions onto the
set of functions that satisfy F̂ |u〉 = |u〉.

(vi) ‡‡ Construct three more operators, P̂ ω, that project onto the sets of functions that
satisfy F̂ |u〉 = ω|u〉, where ω = i, −1 and −i. For the operators you have con-
structed, verify the completeness relation

P̂ 1 + P̂ i + P̂−1 + P̂−i = 1̂.


