ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Vector Spaces for Quantum Mechanics

1st June 2011, 9.45 a.m. - 11.15 a.m.

Answer ALL parts of question 1 and TWO other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

1 of 5 P.T.O

1. a) The kets $|a\rangle$ and $|b\rangle$ are represented in a certain orthonormal basis by $\begin{pmatrix} -2 \\ 2i \end{pmatrix}$ and $\begin{pmatrix} 2+3i \\ 2i \end{pmatrix}$ respectively. Find the numerical values of $\langle a|b\rangle$ and $\langle b|a\rangle$, and the norm of $|c\rangle = |a\rangle + |b\rangle$.

[6 marks]

b) For each of the following matrices, state whether it is Hermitian, unitary, both or neither:

(i)
$$\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$
; (ii) $\begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$; (iii) $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$; (iv) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

[6 marks]

c) How many dimensions are needed for the vector space describing the combined spins of an electron and a proton (both spin- $\frac{1}{2}$)? Write down an orthonormal basis for this space in terms of the single-particle basis vectors $\{|\uparrow\rangle_e,|\downarrow\rangle_e\}$ and $\{|\uparrow\rangle_p,|\downarrow\rangle_p\}$ for the electron and proton respectively. Write down the possible eigenvalues of the total-spin operator \hat{S}^2 for the two-particle system. Without calculation, say which of your two-particle basis vectors are eigenvectors of \hat{S}^2 .

[7 marks]

- d) Let $\{|x\rangle\}$ be the set of eigenkets of the position operator on a function space describing one-dimensional functions of x, normalised according to the delta-function convention
 - (i) Given that $|f\rangle$, $|g\rangle$ in the function space represent the functions f(x), g(x), write down $\langle f|g\rangle$ in terms of f(x) and g(x).
 - (ii) Write down the expansion for the identity operator \hat{I} in terms of the $\{|x\rangle\}$.
 - (iii) Using your answer to (ii), show that $\langle f|\hat{I}|g\rangle$ is the same as your answer to (i). [6 marks]

2 of 5 P.T.O

2. a) Given an operator \hat{A} , write down an expression for a matrix element A_{jk} in a particular basis, say $\{|y_i\rangle\}$. Hence, for a spin- $\frac{1}{2}$ system, find the matrix for the \hat{S}_y operator, in the basis of its eigenkets $\{|+y\rangle, |-y\rangle\}$ (representing spin "up" and "down" along the y axis).

[7 marks]

b) In terms of the eigenkets of \hat{S}_z , i.e. $\{|\uparrow\rangle,|\downarrow\rangle\}$, we can write the \hat{S}_y eigenkets as:

$$|+y\rangle = \frac{|\uparrow\rangle + i|\downarrow\rangle}{\sqrt{2}}, \quad |-y\rangle = \frac{|\uparrow\rangle - i|\downarrow\rangle}{\sqrt{2}}.$$

Construct the matrix of eigenvectors of \hat{S}_y in the S_z basis, and use it to transform $|\uparrow\rangle$, $|\downarrow\rangle$, and the \hat{S}_z operator from the S_z to the S_y representation. You may assume that in the S_z representation

$$\hat{S}_z \xrightarrow{S_z} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

[12 marks]

c) Evaluate the matrix of $\hat{A} = [\hat{S}_y, \hat{S}_z]$ using your S_y -representation matrices. What observable is represented by $\hat{A}/i\hbar$?

[6 marks]

3. a) The lowering operator \hat{a} for a quantum simple harmonic oscillator (SHO) can be written:

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \, \hat{p} \right)$$

Show that the product $\hat{a}^{\dagger}\hat{a}$ is equal to the number operator \hat{N} , whose eigenvalues are the energy level quantum numbers n:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega.$$

[7 marks]

b) Let $\{|n\rangle\}_{n=0}^{\infty}$ be the usual energy eigenstates of the SHO. A so-called coherent state of a quantum SHO is given by

$$|\lambda\rangle = A \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}} |n\rangle,$$

where A is a normalising constant and λ is any complex number. Show that $|\lambda\rangle$ is an eigenstate of the lowering operator \hat{a} , with eigenvalue λ .

[8 marks]

c) Evaluate $\langle \lambda | \hat{a}^{\dagger} \hat{a} | \lambda \rangle$ and $\langle \lambda | (\hat{a}^{\dagger} \hat{a})^2 | \lambda \rangle$, and hence show that for state $|\lambda \rangle$, the expected value of the energy quantum number is equal to the square of its uncertainty: $\langle n \rangle = (\Delta n)^2$.

[10 marks]

You may assume that $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$, and that $[\hat{a}, \hat{a}^{\dagger}] = 1$.

4. A system has orbital angular momentum quantum number l=1. In the L_z basis, \hat{L}_y is represented by

$$\hat{L}_y \xrightarrow{L_z} \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}.$$

a) The system is in a magnetic field aligned with the z-axis, and the Hamiltonian can be written $\widehat{H} = -\mu \hat{L}_z$. If the system is originally in the state with $L_y = 0$, i.e.

$$|\psi(t=0)\rangle = |L_y=0\rangle \xrightarrow{L_z} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix},$$

show that the state at time t is represented in the L_z basis by

$$|\psi(t)\rangle \xrightarrow{L_z} \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\mu t} \\ 0 \\ e^{-i\mu t} \end{pmatrix}$$

[6 marks]

b) Hence find $\langle L_y \rangle$ at time t.

[4 marks]

c) Find the other eigenvalues of \hat{L}_y and their eigenvectors in the L_z basis.

[11 marks]

d) Find the probability of measuring $L_y = +\hbar$ at time t.

[4 marks]

END OF EXAMINATION PAPER

PHYSICAL CONSTANTS AND CONVERSION FACTORS

SYMBOL	DESCRIPTION	NUMERICAL VALUE
С	Velocity of light in vacuum	$299792458 \text{ m s}^{-1}$, exactly
μ_0	Permeability of vacuum	$4\pi \times 10^{-7} \text{ N A}^{-2}$, exactly
ϵ_0	Permittivity of vacuum where $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
h	Planck constant	$6.626 \times 10^{-34} \text{ J s}$
ħ	$h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
\overline{G}	Gravitational constant	$6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
e	Elementary charge	$1.602 \times 10^{-19} \text{ C}$
eV	Electronvolt	$1.602 \times 10^{-19} \text{ J}$
α	Fine-structure constant, $\frac{e^2}{4\pi\epsilon_0\hbar c}$	<u>1</u> 137.0
m_e	Electron mass	$9.109 \times 10^{-31} \text{ kg}$
$m_e c^2$	Electron rest-mass energy	0.511 MeV
μ_B	Bohr magneton, $\frac{e\hbar}{2m_e}$	$9.274 \times 10^{-24} \text{ J T}^{-1}$
R_{∞}	Rydberg energy $\frac{\alpha^2 m_e c^2}{2}$	13.61 eV
a_0	Bohr radius $\frac{1}{\alpha} \frac{\hbar}{m_e c}$	$0.5292 \times 10^{-10} \text{ m}$
Å	Angstrom	10^{-10} m
m_p	Proton mass	$1.673 \times 10^{-27} \text{ kg}$
$m_p c^2$	Proton rest-mass energy	938.272 MeV
$m_n c^2$	Neutron rest-mass energy	939.565 MeV
μ_{N}	Nuclear magneton, $\frac{e\hbar}{2m_n}$	$5.051 \times 10^{-27} \text{ J T}^{-1}$
fm	Femtometre or fermi	10^{-15} m
b	Barn	10^{-28} m^2
u	Atomic mass unit, $\frac{1}{12} m(^{12}\text{C atom})$	$1.661 \times 10^{-27} \text{ kg}$
$N_{\mathcal{A}}$	Avogadro constant, atoms in gram mol	$6.022 \times 10^{23} \text{ mol}^{-1}$
T_t	Triple-point temperature	273.16 K, exactly
k	Boltzmann constant	$1.381 \times 10^{-23} \text{ J K}^{-1}$
R	Molar gas constant, $N_A k$	8.314 J mol ⁻¹ K ⁻¹
σ	Stefan-Boltzmann constant, $\frac{\pi^2}{60} \frac{k^4}{\hbar^3 c^2}$	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
M_E	Mass of Earth	$5.97 \times 10^{24} \text{ kg}$
R_E	Mean radius of Earth	$6.4 \times 10^6 \text{ m}$
g	Standard acceleration of gravity	9.80665 m s^{-2} , exactly
atm	Standard atmosphere	101 325 Pa, exactly
M_{\odot}	Solar mass	$1.989 \times 10^{30} \text{ kg}$
R_{\odot}	Solar radius	$6.96 \times 10^8 \text{ m}$
L_{\odot}	Solar luminosity	$3.84 \times 10^{26} \text{ W}$
T_{\odot}	Solar effective temperature	$5.8 \times 10^{3} \text{ K}$
AU	Astronomical unit, mean Earth-Sun distance	$1.496 \times 10^{11} \text{ m}$
pc	Parsec	$3.086 \times 10^{16} \text{ m}$
	Year	$3.156 \times 10^7 \text{ s}$