## PROBABILITY DISTRIBUTIONS

DISCRETE RANDOM VARIABLES

We've already seen examples where the possible outcomes of an experiment form a DISCRETE SET  $\{x_1, x_2, x_m\}$ :

# of heads in n coin tosses {0,1,...,n}

# of correct lottery numbers {0,1,...,n}

roll of a die {1,2,...,6}

# of dice rolls needed

to get a SIX {1,2,3,...}

Pip count on 2 dice {2,3,... 12}

# a particles emitted by

Source in 1 sec {0,1,..., Nat}

[In many cases the outcomes are integers, though they don't have to be!]. The probabilities P; of the various outcomes X; form a PROBABILITY DISTRIBUTION over the SAMPLESPACE.

EXAMPLE 1: # of heads in 3 coin tosses
$$P_0 = P(TTT) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

$$P_1 = P_2 = \frac{3}{8} \quad [SEE \ L2]$$

$$P_3 = \frac{1}{9}.$$

## EXPECTATION VALUE

... is just another word for the average that would be obtained in an experiment of many trials [N>1]. If xi occurs wi times,

$$E(X) = \langle X \rangle = \frac{1}{N} \sum_{i}^{N_i \times i} [WARNING: also written as X]$$

EXAMPLE 2: If X [the random variable] is the # of heads in 3 coin tosses,  $\langle x \rangle = \sum_{i=0}^{3} i P_i$  $= 0 \times \frac{1}{2} + 1 \times \frac{3}{6} + 2 \times \frac{3}{6} + 3 \times \frac{1}{8} = \frac{3}{2}$ 

## VARIANCE & STANDARD DEVIATION

 $|Var(X) = \sigma^2 = \langle (X - \langle X \rangle)^2 \rangle$ 

... measure the SPREAD of a distribution, i.e., how far x typically DEVIATES from <x>. It would be awkward to use <1x-<x>1> as this measure. Instead use the VARIANCE

[VARIANCE & S.D., CONT ]

To compute the variance, it's often convenient to use

$$VAr(X) = \langle (X - \langle X \rangle)^{2} \rangle$$

$$= \langle X^{2} - 2 \times \langle X \rangle + \langle X \rangle^{2} \rangle$$

$$= \sum_{i} P_{i} (X_{i}^{2} - 2 \times \langle X \rangle + \langle X \rangle^{2})$$

$$= \sum_{i} P_{i} X_{i}^{2} - 2 \langle X \rangle \sum_{i} P_{i} X_{i} + \langle X \rangle^{2} \sum_{i} P_{i}$$

$$= \langle X^{2} \rangle - 2 \langle X \rangle \langle X \rangle + \langle X \rangle^{2}$$

01

Var(x) = 52 = <x2> -<x>2

EXAMPLE 3: For x = [# heads in 3 coin tosses],  $\langle x^2 \rangle = \sum_{i=0}^{3} i^2 P_i$   $= 0^2 \times \frac{1}{2} + 1^2 \times \frac{3}{2} + 2^2 \times \frac{3}{2} + 3^2 \times \frac{1}{2} = 3$ 

$$\Rightarrow \sigma^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}$$

$$= 3 - (\frac{3}{2})^{2} = \frac{3}{4}$$

$$\Rightarrow \sigma = \frac{\sqrt{3}}{2} \approx 0.87$$

MECHANICAL ANALOGY [DIGRESSION]
You could think of the Pi as masses at positions Xi on the x-axis. For

$$0 \quad \stackrel{1}{\longrightarrow} \quad \stackrel{2}{\longrightarrow} \quad \stackrel{3}{\longrightarrow} \quad \times$$

$$m = \frac{1}{3} \quad \frac{3}{3} \quad \frac{3}{3} \quad \frac{1}{3} \quad \frac{1}{3}$$

Expectation value  $\langle x \rangle = \sum P_i x_i = \frac{\sum P_i x_i}{\sum P_i}$ 

EXAMPLES 1-3,

$$\forall \text{ariance} \\ \langle (x-\langle x\rangle)^2 \rangle = \sum_{i} P_i (x_i - \langle x\rangle)^2$$

= MOMENT OF INERTIA
ABOUT CENTRE OF MASS

= CENTRE OF MASS

$$\langle X^2 \rangle = \sum_{i} P_i X_i^2 \equiv MOMENT OF (NERTIAL ROUT X=0)$$

$$= \sigma^2 + \langle x \rangle^2$$

$$= \sigma^2 + (\Sigma P_i) \langle x \rangle^2$$

$$= PARALLEL AXIS THEOREM$$

EXAMPLE 4: The GEOMETRIC DISTRIBUTION.

# of dice rolls needed to get a six:  $P_1 = \frac{1}{6}$  [SIX on 1st attempt]  $P_2 = \frac{5}{6} \times \frac{1}{6}$  [SIX on 2nd attempt]  $P_3 = \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}$ , etc.

More generally, if the chance of success on one attempt is  $\phi$  and chance of failure is  $\phi$  [= 1- $\phi$ ], then

$$P_1 = P$$
 $P_2 = QP$ 
 $P_3 = Q^2P$ 
 $P_n = Q^{n-1}P$ 

GEOMETRIC DISTM

[the P<sub>n</sub> form a

geometric sequence
with common ratio Q]

Always sensible to check that the probabilities and up to 1:

$$\Rightarrow \sum_{n=1}^{\infty} P_n = \frac{p}{1-2} = 1.$$

[EXAMPLE 4, CONTO]

Expected # of attempts:  $\langle n \rangle = \sum_{n=1}^{\infty} n P_n = \sum_{n=1}^{\infty} n \cdot p \cdot q^{n-1} = p \sum_{n=1}^{\infty} n \cdot q^{n-1}$ 

Don't need to remember formula for sum of arithmetic-geometric series!

Just notice that  $nq^{n-1} = d(q^n)$ 

$$\Rightarrow \sum_{i=1}^{\infty} nq_{i}^{n-i} = \frac{d}{dq} \left( \sum_{i=1}^{\infty} q_{i}^{n} \right)$$

$$= \frac{d}{dq} \left( \frac{q_{i}}{1-q_{i}} \right) \xrightarrow{\text{nethod as on last page}}$$

$$= \frac{1}{1-q_{i}} + \frac{q_{i}}{(1-q_{i})^{2}} = \frac{1}{(1-q_{i})^{2}}$$

Hence  $\langle n \rangle = \frac{1}{2} / (1-4)^2 = \frac{1}{2}$ .

Differentiating (B) again helps with calculating the Variance...

[ See next sheet !]

[VARIANCE OF GEOMETRIC DISTRIBUTION]

Use 
$$Var(n) = \langle n^2 \rangle - \langle n \rangle^2$$

$$= < N(N-1) + N > - < n >^2$$

$$= \langle n(n-1)\rangle + \langle n\rangle - \langle n\rangle^2$$

Now, 
$$\langle n(n-1) \rangle = \sum_{n=1}^{\infty} n(n-1) P_n$$
  
=  $\sum_{n=1}^{\infty} n(n-1) p_n^{n-1}$ 

$$= (pq) \left\{ \sum_{n=1}^{\infty} n(n-1) q^{n-2} \right\}$$
 But the quantity  $\left\{ \cdots \right\}$  is  $\frac{d}{dq}$  of left-hand side

$$\Rightarrow \langle n(n-1)\rangle = (pq) \frac{d}{dq} \left( \sum_{n=1}^{\infty} n q^{n-1} \right)$$

$$= (pq) \frac{d}{dq} \left( \frac{1}{(1-q)^2} \right)$$
 [wing ®]

$$= (pq) \times \frac{2}{(1-q)^3}$$

$$= \frac{2pq}{n^3} = \frac{2q}{n^2}.$$

Now use (5): 
$$var(n) = \frac{29}{p^2} + \frac{1}{p} - \left(\frac{1}{p}\right)^2 = \frac{9}{p^2}$$
 [using ptq=1] 
$$\Rightarrow standard deviation  $\sigma = \sqrt{var(n)} = \frac{\sqrt{9}}{p}$ .$$

$$(n) = \frac{1}{p}$$