RANDOM WALK IN 1 DIMENSION

MODEL: N steps of ± 1 along x-axis, with $P(+1) = P(-1) = \frac{1}{2}$.

Probability of k steps to right and N-k to left is

$$P_k(N; \frac{1}{2}) = {k \choose k} {\frac{1}{2}}^N$$
 BINOMIAL DISTRIB!

Displacement [from starting point] is related to k by

$$x = k - (N-k) = 2k-N$$
to right to left

Expectation value [obvious by Symmetry]:

$$\langle x \rangle = \langle 2k - N \rangle$$

= $2 \langle k \rangle - N = 2 \times \frac{N}{2} - N = 0$.

Variance of x:

$$Var(x) = \langle x^2 \rangle = \langle (2k-N)^2 \rangle$$

= 4 Var k = 4 x N x \frac{1}{2} \times \frac{1}{2}

$$\Rightarrow \sigma_x = \times_{RMS} = \sqrt{N}$$

PC10471: LECTURE 20

[RANDOM WALK IN 1D]
The probability P(x; N) that the walk has reached x after N steps
(s [of course] the same thing as

P_(N; 1/2) with k = (X+H)/2.

from the fact that Pk is Gaussian for large N is follows that P(X;N) is also Gaussian in this limit:

$$P(x; N) \simeq \frac{e^{-x^2/2\sigma_X^2}}{(2\pi\sigma_X^2)^{1/2}} = \frac{e^{-x^2/2N}}{(2\pi N)^{1/2}}$$

valid for N>D1 and x«N.

19. 8

"GOING NOWHERE" IN 1D

A random walk in 10 is certain to return to its starting point — eventually!

PROOF relies on the symmetry of P(xiN)
about x=0 and the fact that the
probability of remaining in the range
[-1,1] tends to zero for N-∞:

$$P(-L \le x \le L; N)$$

$$= \sum_{x=-L}^{\infty} P(x; N)$$

$$\simeq \sum_{x=-L}^{\infty} \frac{e^{-x^2/2N}}{\sqrt{2\pi N}} \quad \text{Gaussian limit,}$$

$$N >> 1.$$

$$<\frac{2L+1}{\sqrt{2\pi N}} \rightarrow 0$$
 as $N \rightarrow \infty$

Hence the particle is certain to exit from any region, and if it started from the middle, the probability of exiting to left or right is 1/2 [by symmetry].

["GOING NOWHERE" PROOF]

STRATEGY: We show that the prob. of NOT returning to x=0 can be broken down to a sequence of independent exit events whose prob. tends to 0.

STEP 1: The particle is at x=1 [or-1] after the first rand. Step away from x=0. On its next step, it either returns to x=0 or "exits" to x=2.

After STEP 1, the probability that it's at x = 2 is $\sqrt{2}$.

Particle Starts at centre of this region.

The particle has room to move around, but will eventually exit to x=0 or x=4. The prob. after STEP 2 that it has not yet returned is $\pm x \pm$

prob. it prob. it exits to right in STEP2 to 0 after Step 1

["GOING HOWHERE" PROOF]

STEP 3: 0 1 2 3 4 5 6 # 8

particle starts at centre of this region.

Eventually it exits, either to x=0 or x=8. The prob. after STEP3 that it has not yet returned to x=0 is $\pm x \pm x \pm \cdot$

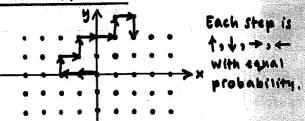
AND SO ON. After Step N, the prob. that that the particle has not returned to x=0 Will be $\left(\frac{1}{2}\right)^N \longrightarrow 0$ for $N \longrightarrow \infty$.

Hence the probability of return to the starting point $=1-\frac{1}{2^{N}} \rightarrow 1$.

[Aside: A similar result holds for random walks in 2D.

There is no such result for 3D: the probability of return is non-zero, but less than 1.]

RANDOM WALK IN 2D



We want to find P(x,y; N), the prob. that we are at (x,y) after N Steps.

Break this up: prob. that M steps are for J and N-M are + or + is $P_M(N; \frac{1}{2})$.

fiven M steps \$, the probability of reaching y is P(y; M), since each of the steps is equally likely to be t or \$[50 it's a random walk of M steps in y].

Similarly, the prob. of reaching x in N-M steps is P(x; N-M).

Hence $P(x,y;n) = \sum_{m=0}^{N} P(x,n-m) P(y,m) P_m(n,\frac{1}{2})$

[we sum over the mutually exclusive possibilities for M.] Looks messy, but simplifies for $N\gg 1$, because $P_M(N,\frac{1}{2})$ is sharply peaked around M=N/2, with width $\ll N$ $\ll N$. P(X;N-M)P(Y;M) varies very little over this range $< M>\pm \sqrt{N}$, so can treat that

as a [nearly!] constant factor in the sum:
$$P(x,y;n) \simeq P(x;n-\langle m \rangle)P(y;\langle m \rangle) \sum_{\underline{y}} P_{m}(N;\underline{t})$$

$$= \frac{e^{-(x^2+y^2)/N}}{\pi N}$$
DEPENDS ONLY
on DIST. From
ORIGIN.

EXTENSION TO 3D

Can progress from 20 to 30 in much the same way as we got from 10 to 20.

The probability that any given step is in the ± 2 direction is 1/3, so prob. that M out of N steps are ± 2 is $P_{M}(N; 1/3)$, which is sharply peaked around M = N/3.

Given M steps \$2, the probability of reaching x, y, & is P(x, y; N-M)P(2; M).

Hence

$$P(x,y,z;N) = \sum_{m=0}^{N} P(x,y;N-m) P(z;m) P_{m}(N;y;y)$$

$$= P(x,y;N-\frac{n}{3}) P(z;\frac{n}{3}) \sum_{m=0}^{N} P_{m}(N;y;y)$$

$$= P(x,y;\frac{n}{3}) P(z;\frac{n}{3}) P(z;\frac{n}{3})$$

$$= P(x;\frac{n}{3}) P(y;\frac{n}{3}) P(z;\frac{n}{3})$$

$$=\frac{e^{-(x^2+y^2+\frac{x^2}{2})/(2N/3)}}{(2\pi N/3)^{3/2}}$$