PC4902: Elements of QMBT, Pt 2 Problems 5
Key: Easy; Moderate; Difficult; Optional

. [EM] For a one-dimensional Heisenberg antiferromagnet of (an even
number) N spins with S > 1, the Hamiltonian may be approximated
by the quadratic expression

H=7JSY (alal,, +aa;,, +2ala;) — NJS?,
J

where {d}, &j} are the Holstein-Primakoff Bose operators and the sum
includes the sites of both sub-lattices. In the lecture we considered a
Bose operator that creates a running wave; in one dimension this would
be
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where a is the lattice spacing and k = 27 X [integer|/Na is the wave
vector appropriate to periodic boundary conditions. Show that in terms
of these new operators, the Hamiltonian can be written as

H = JSZ(COS ka{i)lgﬂ_k + l;kl;_k} + 2?)2%) — NJS?.
k

pse thisA form for the Hamiltonian to obtain the commutators of H with
bl and b_,:
[ﬁ, EH = 2JS(EL + cos ka B_k)
[ﬁ, B_k} = —ZJS(E_k + cos ka Z;L)

Make the Bogoliubov transformation Bli = ukZ;L + Uki)_ . to help solve

the equation of motion for the excitation creation operator B};, and so
obtain the excitation spectrum

€ = 2JS |sinkal .

[OD] If you have plenty of time, solve for the coefficients uj and vy that
appear in the Bogoliubov transformation, and hence show that

H=> {88, +1} - NJS(S+1).
k

You can then integrate the zero-point energy of the magnons to obtain
the spin-wave approximation to the ground state energy
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Even for S = % (the worst possible case) this is quite a good approxima-
tion to the exact result, £y = —NJ (ln 2— i) The agreement may well
be fortuitous here: to find out, we would need to analyse higher-order
terms in the expansion in powers of 1/S.



2. [EM] Show to your own satisfaction that the Jordan—-Wigner transfor-
mation from spin—% operators to fermions,
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correctly reproduces the commutation relations of the spin components.
Note that we have written e'™ instead of the (—1) used in lectures.

In a one-dimensional chain of N spins S = % with anisotropic interac-

tions, the Hamiltonian operator takes the form

H= Z{JXS;CS;CH +JySYSY, 1},
J
where Jx and Jy are constants. Use the Jordan—Wigner transformation
to show that the Hamiltonian may be re-written as

H =Y {—t(le;, +el¢6) + Aelel +e,,8)), (1)
J

where

where t = —1(Jx + Jy) and A = (Jx — Jy); it will save some work if

you express the Hamiltonian in terms of S';L and S ; before making the
transformation to fermions.

[OD] The fermion excitation spectrum can be found by the equation-
of-motion method. The Hamiltonian (1) is similar in structure to the
lowest-order Bose approximation to the antiferromagnetic Heisenberg
Hamiltonian, which suggests a similar method of solution. We define a
creation operator for a running wave,
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and evaluate the commutators of czz and d_ , With H. The equation of
motion for an excitation can be solved using Bogoliubov combinations
of the form

) 7t
<fk>:<uk* vi)(fik), for £ > 0 only,
f_k — Uk Uy, d_k

where |ug|? + |vgx|? = 1, if the transformation is to preserve the anti-
commutation relations. Also note the sign difference (compared with
the Bose case) that appears in transformation itself: this is needed to

ensure that f,z and fik anticommute.
The spectrum should come out to be
er = 3 (Jx +J3 + 2JxJy cos[2ka])1/2.

Does the result make sense for the special cases Jx = Jy (the isotropic
XY model) and Jy = 0 (the Ising model)?



