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2 Classical Thermodynamics: 2nd law

This is a substantial chapter, containing many important results and many techniques.
There are two common technical difficulties for many students at the beginning:
proof of theorems and partial derivatives. We will emphasize the understanding and
applications of the theorems and we will do many practices in partial differentiations.

In this Chapter, we start from 2 simple experimental observations: (a) Whereas
we can (easily) transform work into heat with 100% efficiency by means which leave
the system generating the heat in its original state, the converse is not true; and (b)
There is a natural direction to spontaneous processes (e.g., the cooling of a cup of
coffee; the mixing of the milk in the coffee; etc.); and from them, derive the existence
of a new state variable called entropy, S.

In classical thermodynamics, entropy ”completes the set” of relevant thermody-
namic variables (e.g., for a gas the complete set is (P, V, T, S) - anything else can be
put in terms of these). However, the underlying deeper meaning of entropy (which
is intrinsically a mysterious, deep and subtle concept) only become clearer when we
progress to statistical mechanics.

2.1 Heat engines and refrigerators

Heat engines run in cycles. After one cycle: ∆E = 0 (by definition); an amount
of heat QH > 0 has been absorbed from a hot source (or set of hot sources; e.g., the
hot combustion products in a car engine); the engine has done work w > 0 on its
surroundings; and an amount of heat QC > 0 has been emitted to a cooler thermal
reservoir (or set of cooler reservoirs; e.g., the outside air).

Figure 1
Experimental fact: We can not make QC = 0, however hard we try, and however

desirable, even in the absence of frictional or dissipative processes (i.e., even for a
reversible engine QC > 0). See Figure 1. The first law:

w = QH − QC (1)
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since ∆E = 0. We define the efficiency of heat engine as

ηE =
w

QH

= 1 − QC

QH

< 1. (2)

Example: We have seen one example in Q1 of Example Sheet 3. Lets do another,
the air-standard Otto cycle: an idealization of a standard gasoline engine in a car.

Figure 2
The compression stroke a → b and the expansion stroke c → d are adiabatical, so
heat enters and leaves only during the constant volume (isochoric) processes b → c
and d → a. It is easy to calculate ηE for this reversible Otto cycle if the working
substance is an ideal gas, for which CV is a constant, independent of temperature,
along b → c and d → a

QH =
∫ Tc

Tb

CV dT = CV (Tc − Tb)

and

QC = −
∫ Ta

Td

CV dT = CV (Td − Ta).

Thus

ηE = 1 − QC

QH

= 1 − Td − Ta

Tc − Tb

. (3)

For an adiabatic process on an ideal gas we have PV γ = const. (Q1 of Example Sheet
2) and also PV = nRT , ideal gas law. There two equations give

TV γ−1 = const (4)

for adiabatic processes on ideal gas. Thus, the 2 adiabatic processes c → d and a → b,
we have

TdV
γ−1
1 = TcV

γ−1
2 , TaV

γ−1
1 = TbV

γ−1
2 .

After subtraction, we have

(Td − Ta)V
γ−1
1 = (Tc − Tb)V

γ−1
2 (5)
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Substitute into Eq. (3) we have

ηE = 1 −
(

V2

V1

)γ−1

= 1 − Ta

Tb

= 1 − Td

Tc

, (6)

where in the last two equations we have used Eq. (4). Note: For the Otto cycle it
is easy to see Tc > Tb > Ta and Tc > Td > Ta, hence ηE < 1 − Ta

Tc
, which we will

comment on later in correction with the discussion on Cannot engines.
Refrigerators are just heat engine run in reverse, i.e., where we supply work

to pump heat from cooler to hotter bodies, i.e. w, QH and QC all change sign and
become W, qH and qC , as shown in Figure 3.

Figure 3
The first law:

W = qH − qC . (7)

Examples of such machines are standard refrigerators, air-conditioners, and heat
pumps. These are all essentially the same but have different purposes. Thus, re-
frigerators and air-conditioners are used for cooling (e.g., the refrigerators cabinet, or
room), whereas the heat pump is used to heat (e.g., a room or building). We now
tailor the definition of efficiency to the purpose. In general:

η =
desired output

necessary input
. (8)

(Note: Whereas the fact that QC 6= 0 is an unavoidable nuisance for a heat engine,
the fact that qC 6= 0 means that refrigerators and heat pumps actually work!)

• For engines: desired output = w; necessary input = QH , hence

ηE =
w

QH

=
QH − QC

QH

. (9)

• For refrigerators: desired output = qC ; necessary input = W , hence

ηR =
qC

W
=

qC

qH − qC

. (10)
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• For heat pump: desired output = qH ; necessary input = W , hence

ηP =
qH

W
=

qH

qH − qC

. (11)

We note: ηE < 1 always; ηR may be > 1 or < 0 (usually > 1 in practice); ηP > 1
always. Real engines are optimised to work in one direction, and are not reversible.
However, for idealized reversible engines, only the signs of work and heat will change

ηrev
P =

1

ηrev
E

. (12)

Most reversible processes require an infinite number of heat reservoirs at infinites-
imally close temperatures to keep everything quasistatic. However, a special form of
heat engine is one where we have only 2 reservoirs: a hot one at temperature TH , and
a cold one at TC < TH . Reversible engines with only 2 such reservoirs play a very im-
portant role in later developments. We may wonder, e.g., (1) What is the maximum
ηE that can be achieved for a given TH and TC? (2) What are the characteristics
of such maximally efficient engines? (3) Of what effect is the nature of the working
substance in such maximally efficient engines? These questions were all answered by
Sadi Carnot.

[Refs.: (1) Mandl 5.2, (2) Bowley and Sanches 2.3, (3) Zemansky 6.1-6.5.]

2.2 The second law of thermodynamics

There are 2 different (seemingly) statements, both generalized from everyday experi-
ence:

(1) Kelvin-Planck statement: It is impossible to construct an engine which,
operating in a cycle, produces no effect other than the extraction of heat from a
reservoir and the performance of an equivalent amount of work.

(2) Clausius statement: It is impossible to construct a refrigerator which, op-
erating in a cycle, produced no effect other than the transfer of heat from a cooler
body to a hotter one.

Note: (a) The ”operating in a cycle” is crucial to the truth of the statements; since
this ensures that the engine itself is unchanged by the process. (b) Neither statement
is demanded by the 1st law - energy would still be conserved - so this is something
genuinely different.

The 2 statements look very different, but in fact each implies the other as we can
now easily prove. Consider a hypothetical Kelvin-violating engine K̄ and a hypothet-
ical Clausius-violating refrigerator C̄ as drawn in Figure 4:
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Figure 4
Now hook them up with regular (i.e., legal) engine E or refrigerator R in the 2

ways shown as Figures 5 and 6.

Figure 5
From Figure 5,

K̄ + R ≡ C̄, i.e. K̄ ⇒ C̄. (13)

Figure 6
From Figure 6,

C̄ + E ≡ K̄, i.e. C̄ ⇒ K̄. (14)

Thus, Eqs. (13-14) show C̄ ⇔ K̄, or C̄ ≡ K̄. But logically,

C̄ ⇔ K̄ → C ⇔ K

or C ≡ K.
[Refs.: (1) Mandl 2.1; (2) Bowley and Sanchez 2.2; (3) Zemansky 6.6-6.8]
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2.3 Carnot cycles and Carnot engines

Real-life engine running with (even idealized reversible) most standard cycles (e.g.,
the Otto cycle of Chap. 2.1) are complicated by the fact that they generally need an
infinite series of heat reservoirs for the quasistatic processes (e.g., heating at constant
volume in the Otto cycle).

By contrast, a Carnot engine, by definition is a reversible engine operating be-
tween only two heat reservoirs: all processes are either isothermal (i.e., heat transfer
at constant temperature) or adiabatic (i.e., no heat transfer). Later, we will see a
Carnot cycle for an ideal gas on a P -V diagram. But, first, there are some pow-
erful statements we can make about Carnot engines without any knowledge of the
substance.

Carnot’s theorem: A reversible engine operating between any 2 given reservoirs
(i.e., Carnot engine) is the most efficient that can operate between those reservoirs.
(No engine operating between two given temperature is more efficient than Carnot
engine.)
Proof: Operate a Carnot engine C and an arbitrary engine X (not necessarily re-
versible) between two reservoirs at TH and TC with (TH > TC). By the first law, the
work done by the engines

wc = Qc
H − Qc

C , and wx = Qx
H − Qx

C .

Let Qc
H/Qx

H = N/M , where N, M are two integers (can be satisfied to any desired ac-
curacy.). Now operate C engine M cycles in reverse (as Carnot engines are reversible)
and X engine N cycles forward. Consider (C+X) as an engine total, then

wtotal = Nwx − Mwc .

But

Qtotal
H = NQx

H − MQc
H = 0

Qtotal
C = NQx

C − MQc
C

hence
wtotal = Qtotal

H − Qtotal
C = −Qtotal

C = − (NQx
C − MQc

C) .

This is shown in Figure a.
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Figure a

However, K’s statement says we cannot convert heat entirely to work—here we have
extracted no heat from TH . Thus K’s statement is broken unless wtotal ≤ 0, or
Qtotal

C ≥ 0, i.e.,

NQx
C − MQc

C ≥ 0, or
N

M
≥ Qc

C

Qx
C

.

Therefore
Qc

H

Qx
H

≥ Qc
C

Qx
C

, or
Qc

C

Qc
H

≤ Qx
C

Qx
H

and

ηCE

(

≡ 1 − Qc
C

Qc
H

)

≥ ηX

(

≡ 1 − Qx
C

Qx
H

)

.

The equality holds if X engine is also reversible. We therefore have the following
corollary.

Corollary: all reversible (i.e., Carnot) engines working between the same 2 heat
reservoirs have identical efficiencies.

This is a remarkable (and deep) result. It means for reservoirs at temperatures TH

and TC , ηC = ηC(TH , TC) only, independent of working substance, e.g., the working
substance could be an ideal gas, a real (non-ideal) gas, a paramagnet, etc. We can
evaluate for any one, and others will be the same. So we do for an ideal gas.

Efficiency of an ideal gas Carnot cycle. Consider a cycle as shown in Figure 7.

• a → b: isothermal compression in contact with a reservoir at temperature TC ;
heat QC emitted

• b → c: adiabatic compression (no reservoirs; no heat flow)
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• c → d: isothermal expansion in contact with reservoir at temperature TH ; heat
QH absorbed

• d → a: adiabatic expansion

Figure 7
The first law d̄Q = dE − d̄W = dE + PdV for reversible process. Also for ideal

gas, E = E(T ) and dE = 0 along an isotherm. Hence d̄Q = nRTdV/V along an
isotherm. Therefore we have

QC = −
∫ b

a
nRT

dV

V
= nRTC ln

Va

Vb

(15)

along a → b and

QH =
∫ d

c
nRT

dV

V
= nRTH ln

Vd

Vc

(16)

along c → d. The efficiency

ηCE ≡ 1 − QC

QH

= 1 − TC

TH

ln(Va/Vb)

ln(Vd/Vc)
. (17)

Also, from Eq. (4), TV γ−1 = const for adiabatic process on ideal gas. Thus for the 2
adiabatic processes b → c and d → a, we have

TCV γ−1
b = THV γ−1

c and TCV γ−1
a = THV γ−1

d .

Take a ratio, (Va/Vb)
γ−1 = (Vd/Vc)

γ−1, or

Va

Vb

=
Vd

Vc

. (18)
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Put into Eq. (17), we have

ηCE = 1 − TC

TH

. (19)

From the corollary, although we derived Eq. (19) for an ideal gas Carnot engine,
Eq. (19) now holds for all Carnot engines. Also from definition of efficiency and
Eq. (19), we have an important general relation, Carnot relation,

QC

TC

=
QH

TH

(20)

for Carnot engine. In the followings, we discuss examples involving heat engines.

Example 1: A power station contains a heat engine operating between 2 reservoirs,
one comprising steam at 100 ◦C and the other comprising water at 20 ◦C. What is
the maximum amount of electrical energy which can be produced for every Joule of
heat extracted from the steam?
Solution: The maximum w comes from a Carnot engine. We have QH − QC = w
and QH/TH = QC/TC . Hence

w = QH

(

1 − TC

TH

)

.

Insert QH = 1 J, TC = 293 K, TH = 373 K, w = 1 × (1 − 293/373) = 0.21 J.

Example 2: A refrigerator operating in a room at 20 ◦C has to extract heat at a rate
of 500 W from the cabinet at 4 ◦C to compensate for the imperfect insulation. How
much power must be supplied to the motor if its efficiency is 80% of the maximum
possible?
Solution: The minimum Ẇmin comes from a Carnot refrigerator (Note: all quantities
now refer to energy or heat transfer per second). We have [see Eqs. (7) and (20)]

Ẇmin = q̇H − q̇C , and
q̇H

TH

=
q̇C

TC

,

hence

Ẇmin = q̇C

(

TH

TC

− 1
)

.

Insert q̇C = 500 W, TC = 277 K,TH = 293 K, Ẇmin = 500×16/277 = 28.9 W. But the
real refrigerator works at 80% of maximum efficiency, we have Ẇreal = Ẇmin/0.8 =
36.1 W.

Do you know how a real refrigerator works? What is the common working sub-
stance used? Can efficiency of refrigerators as defined in Eq. (10) be greater than
1?

[Refs.: (1) Mandl 5.2; (2) Bowley and Sanchez 2.3; (3) Zemansky 7.1-7.4]
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2.4 The thermodynamic temperature scale

Although we have evaluated the efficiency of an ideal gas Carnot engine, one could
easily imagine it might be more difficult for other working substances. The whole
point, however, is we don’t have to! They are all the same (for given TC , TH). Indeed,
we can now use this fact to define an absolute temperature scale, i.e., independent
of the working substance. Since all Carnot engines are equivalent the efficiency can
dependent on θC , θH . So we define

QC

QH

≡ f(θC , θH), so ηCE = 1 − f(θC , θH) (21)

on some, as yet, unspecified temperature scale, where f(θC , θH) is unknown. We will
show, by considering Carnot engines working in series what the form of f(θC , θH)
must be.

Consider the Carnot engine as shown in Figure 8. Clearly, the 2 engines in series
on the left are completely equivalent to the single engine on the right (both the
compound engine and the single engine draw QH from the hot reservoir at θH , and
reject QC to the cool reservoir at θC).

Figure 8
For the compound engine

QI

QH

= f(θI , θH); w1 = QH − QI = [1 − f(θI , θH)]QH

and

QC

QI

= f(θC , θI); w2 = QI − QC = [1 − f(θC , θI)]QI = [1 − f(θC , θI)]f(θI , θH)QH
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Combine 2 equations

w1 + w2 = [1 − f(θC , θI)f(θI , θH)]QH .

Hence, the efficiency of the composite engine is

ηCE =
w1 + w2

QH

= 1 − f(θC , θI)f(θI , θH)

which must be identical to Eq. (21) since w = w1 + w2. Therefore

f(θC , θI)f(θI , θH) = f(θC , θH).

But note from Eq. (21), f(θ1, θ2) = 1/f(θ2, θ1) by definition, hence

f(θC , θH) =
f(θC , θI)

f(θH , θI)

and the RHS must hence be independent of θI since the LHS is. Hence, this can only
be true if f(θ1, θ2) factorizes into a product of functions of θ1 and θ2

f(θC , θH) =
t(θC)

t(θH)

where t(θ) is any function of θ. We have

ηCE = 1 − t(θC)

t(θH)
(22)

and any function t(θ) defines a temperature scale (e.g., we could define a linear scale
or logarithmic scale, etc.).

The Kelvin absolute scale chooses a linear scale t(θ) = θ,

Kelvin scale : ηCE = 1 − θC

θH

. (23)

Hence θ on this absolute scale is equal, by comparison with Eq. (19), to KT , where
T is the ideal gas (absolute) temperature and K is a constant. Clearly K = 1 if we
define θtriple = Ttriple = 273.16 K.

[Refs.: (1) Bowley and Sanchez 2.3-2.4; (2) Zemansky 7.5]
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2.5 Entropy and maximum entropy theorem

The extremely important result which we now prove is the following theorem.
Clausius’ Theorem: If a system is taken through a cycle, the algebraic sum of the
heat added weighted by the inverse of the temperature at which it is added, can never
be greater than zero,

∮

d̄Q

T
≤ 0 . (24)

The equality holds if the process is reversible, i.e.
∮

d̄Qrev

T
= 0 . (25)

Proof: Consider a system A going through a cycle process. Divide the cycle into
n infinitesimal steps, in each of which the temperature can be taken as constant
T1, T2, · · ·, Tn, through contact with a series of heat reservoirs at those temperatures,
as shown in Figure b.

Figure b

Let Qi be heat absorbed during the ith step, i.e., from reservoir at Ti. We shall
prove

∑n
i=1 Qi/Ti ≤ 0 and let then let n → ∞. Construct a set of n Carnot engines,

C1, C2, · · ·, C2, and let Ci (a) operates between Ti and T0 (with T0 ≥ all Ti), (b)
absorbs heat Q0

i from T0 and rejects heat Qi to Ti and the total working done by
these Carnot engines is w =

∑

i wi. By Eq. (20) for a Carnot engine,

Q0
i

Qi

=
T0

Ti

.
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One complete cycle plus the operation of n Carnot engines (as indicated in the box
of dashed lines in Figure b) means that heat Q0 =

∑n
i=1 Q0

i is absorbed from the
reservoir at T0 and converted entirely into work, none is rejected since the ith engine
rejects Qi to Ti and this is used in the cycle. This violates the 2nd law unless Q0 ≤ 0.
Since Q0 =

∑n
i=1 Q0

i = T0
∑n

i=1 Qi/Ti, then
∑n

i=1 Qi/Ti ≤ 0. If the cycle is reversible,
reverse it. Then everything is as before except signs of Qi change, −∑n

i=1 Qi/Ti ≤ 0.
Combining with above result

∑n
i=1 Qi/Ti = 0 for a reversible transformation. QED

Note: This is easily seen to hold true for any Carnot cycle, since for these heat
only enters or leaves at one of two temperatures,

∮

Carnot

d̄Q

T
=

QH

TH

− QC

TC

= 0

where we have used Eq. (20).
The importance of Eq. (25) is that we can use the fact that only that any quantity

whose change vanishes over a cycle must be state variable (or function of state) to
write

d̄Qrev

T
= dS (26)

such that
∮

dS = 0. In above equation, S is a new state variable, called entropy. And
in general

∫ 2

1

d̄Qrev

T
=
∫ 2

1
dS = S2 − S1, independent of path taken 1 → 2.

Also, from 1st law, dE = d̄Q + d̄W = d̄Qrev + d̄W rev = d̄Qirrev + d̄W irrev and, by
definition of reversibility, for a given change of the system (e.g., given dV for a gas),
d̄W irrev > d̄W rev (to overcome friction, etc.), we have d̄Qirrev <d̄Qrev, or

d̄Q ≤ TdS (27)

in general. The equality holds for reversible processes. Hence, for an isolated system
(for which d̄Q ≡ 0)

dS ≥ 0 (28)

namely, the entropy of an isolated system never decreases. This is an alter-
native statement of 2nd law. Note: Any system plus its surroundings (deliberately
called in thermodynamics by the somewhat grandiose title ”the universe”) forms an
isolated system. Hence we have another statement: the entropy of the universe
never decreases. (i.e., any decrease in the entropy of a system must be at least com-
pensated by an increase in the entropy of its surroundings). Therefore, an isolated
system will evolve in the direction of increasing entropy until it reaches a thermal
equilibrium state at which entropy is maximum. In summary:
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Maximum Entropy Theorem: An isolated system at equilibrium must be
in the state of maximum entropy.

In the next section, we will exploit the fact that entropy is a state function (process
independent) when we calculate entropy change for an irreversible process by consid-
ering a reversible process with the same initial and final states. This is the key idea
in most questions on entropy calculation. Understand it and exploit it when you do
your exercise questions.

[Refs.: (1) Bowley and Sanchez 2.5,2.7; (2) Zemansky 8.1-8.2, 8.8-8.9]

2.6 Some examples involving entropy changes

We will do various prototypical examples below, which demonstrate (among other
thing) that, in general, (a) the entropy of any system increases when it is heated
and (b) the entropy of gas increased when it expands at constant temperature. A
common theme, and one we will explore in much more detail later is that an increase
in entropy means an increase in disorder. We will see that the entropy of the universe
always increases during spontaneous changes (typical example are the flow of heat
from a hotter to a cooler body and the free expansion of a gas). In these examples
the total entropy increases, although that of parts of the system may decrease.

Heat flow from hotter to colder bodies is irreversible, and reversible processes
must involve heat flow between bodies at the same temperature or only infinitesimally
different. The entropy change of the system

dSsystem =
d̄Qrev

T

must be exactly balanced by that of the heat bath

dSreservoir = −d̄Qrev

T

so that dSuniverse = 0.
For adiabatic process no heat flows d̄Q = 0. Thus, dS = d̄Qrev/T and dS = 0 for

any reversible, adiabatic process. We define isentropic= adiabatic and reversible.
In summary,

• ∆Suniverse > 0 for spontaneous changes

• ∆Suniverse = 0 for reversible changes, during which

∆Ssystem = −∆Ssurroundings

• Spontaneous changes are always irreversible
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• Isentropic change ⇔ reversible, adiabatic changes dS = 0

Example 1: Two identical blocks of metal, one at 100 ◦C and the other at 0 ◦C
are put in thermal contact, Derive the total entropy change when equilibrium is re-
established. (You may assume that the heat capacity, C, of each block is constant
over this temperature range, and neglect volume changes.)
Solutions: Clearly heat will flow from hotter to cooler body until they attain the
same temperature. By conservation of energy this will be 50 ◦C. The heat transfer
occurs so as to maximise that entropy. So, if d̄Q is transferred from the hot body at
TH to the cold one at TC

dSC >
d̄Q

TC

, dSH > −d̄Q

TH

and

dStotal = dSH + dSC >
(

1

TC

− 1

TH

)

d̄Q > 0.

Thus, the entropy decrease of the hot block is more than compensated by the en-
tropy increase of the cold block; and the spontaneous heat flow is associated with a
net (overall) entropy increase. Namely, the blocks exchange heat to maximise their
combined total entropy. In order to calculate ∆Stotal we use the following technique.
Since we can’t calculate ∆S for irreversible process we must find a reversible process
that takes us from the same initial to the same final end point. Then, since ∆S is
independent of the actual process, this will suffice. For heating or cooling of the
blocks this would involve a quasistatic process of bringing the blocks into contact
with an infinite sequence of heat baths at infinitesimally increasing or decreasing
temperature, so that the temperature difference between the heat bath and the block
is always negligible and the entropy change is zero.

∆S =
∫ 2

1

d̄Qrev

T
,

where d̄Qrev = CdT . But if C =const,

∆S = C
∫ 2

1

dT

T
= C ln

T2

T1
.

Thus, in our case of 2 identical blocks

∆Stotal = ∆SC + ∆SH = C ln
Tf

Tc

+ C ln
Tf

TH

= C ln
T 2

f

TCTH

.
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Inserting the values TH = 373 K, TC = 273 K, Tf = 323 K,

∆Stotal = C ln
3232

373 × 273
= 0.024C

Note: ∆Stotal > 0, as required; and that the unit of entropy = unit of heat capacity
= J K−1.

Example 2: Two identical blocks of metal, one at 100 ◦C and the other at 0 ◦C are
brought into thermal contact. What is the maximum amount of work w that can
be extracted from the hot block in the absence of other heat sinks, expressed as a
fraction of the total heat loss QH of the hot block?
Solution: Clearly, we can’t just extract heat from the hot block an turn it all into
work, since ∆SH < 0. We need to add at least enough heat QC to the cold block
so that ∆SC > 0 just balances ∆SH , i.e. we can make ∆SC + ∆SH = 0. Note the
work extracted can always be used to do things which lead to zero entropy change
(e.g., raising a weight). Once the 2 blocks come to the same final temperature Tf no
further work can be extracted. From Example 1,

∆Stotal = ∆SH + ∆SC = C ln

(

T 2
f

THTC

)

≥ 0.

The maximum work possible corresponds to the lowest possible Tf (see equation for
work w below). The lowest possible Tf is that for which ∆Stotal = 0, viz.

Tf =
√

THTC ≈ 319.1K = 46.1 ◦C

(If Tf were any lower ∆Stotal < 0 and this isn’t allowed by the 2nd law). Now

QH = C(TH − Tf ), QC = C(Tf − TC).

Hence, by energy conservation, the work extracted

w = QH − QC = C(TH + TC − 2Tf) = C(TH + TC − 2
√

THTC).

The efficiency

η =
w

QH

=
TH + TC − 2

√
THTC

TH −
√

THTC

=
(
√

TH −
√

TC)2

√
TH(

√
TH −

√
TC)

= = 1 −
√

TC

TH

.

17



Inserting the values TH = 373 K, TC = 273 K

w =

(

1 −
√

TH

TC

)

QH = 0.144QH.

i.e., only 14.4% of the heat lost by the initially hot block was available to do work.
Note, too, that this maximum efficiency is obtained from a reversible process. [Com-
pare with the corresponding efficiency η = 1 − TC/TH = 26.8% for a Carnot engine
working between two (infinite) reservoirs at fixed temperatures TH = 373 K, TC = 273
K.]

Example 3: [Heat engines revisited] From the law of non-decrease of entropy, show
that the maximum efficiency of a heat engine operating between 2 (infinite) reservoirs
at fixed temperatures TH and TC occurs when the engine is reversible.
Solution: This is now the converse of our previous discussion. The change in entropy
of the total engine

∆Stotal = ∆SC + ∆SH =
QC

TC

− QH

TH

≥ 0.

Hence
QC

QH

≥ TC

TH

,

with equality for ∆S = 0, i.e. for a reversible process. The efficiency

η =
w

QH

= 1 − QC

QH

≤ 1 − TC

TH

maximum for equality (i.e., for reversible engine).

Example 4: A quantity of n moles of an ideal gas at temperature T0 are initially
confined to half the volume of an insulated container by an insulated partition. The
partition is removed without doing any work. What is the ensuing change of entropy?
Solution: The process is adiabatic, d̄Q = 0. However, we recall, this does not implied
dS = 0 since this is not a reversible process. Once again, we need to find, however, a
reversible process to go from same initial to same final point. As we saw earlier (and
see, e.g. Q1(b) on Example Sheet 1), this could be an isothermal expansion done
reversibly. In such an expansion

Qrev = −W rev =
∫ 2

1
PdV =

∫ V2

V1

nRT0

V
dV = nRT0 ln

V2

V1
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Put V2 = 2V1 as in this problem

∆S =
Qrev

T0
= nR ln 2.

Note: The logic here is quite subtle - do make absolutely sure you understand the
difference between the actual process (with Q = W = 0) and the reversible process
for which we could calculate ∆S (with Qrev = −W rev 6= 0).

Example 5a: A box of gas is joined by an identical box of the same gas. What is
the change in total entropy?
Solution: This is a reversible process (as nothing changes when removing the parti-
tion and putting it back). Total entropy change is therefore zero, ∆Stotal = 0, where
Stotal = S1 + S2 = 2S1. The following example is an irreversible process (How?) and
the total entropy must increase.

Example 5: An insulated container is originally divided in half by a partition, and
each half is occupied by n moles of a different ideal gas at temperature T0. What is
the total change in entropy when the partition is removed without doing any work?
Solution: Since both gases are ideal, they don’t interact, each species is oblivious of
the other, and ∆S for each is exactly as in Ex. 4 above. Thus

∆Stotal = 2nR ln 2.

Note: the total mixing - which we know will happen eventually - is precisely the
change that now maximises the entropy, i.e., clear hint that entropy means disorder.
It is obvious that the process is an irreversible one as the situation is quite different
from the initial state when putting back the partition after mixing.

[Refs.: (1) Manl 4.3, (2) Bowley and Sanchez 2.8; (3) Zemansky 8.11-8.13]

2.7 The fundamental thermodynamic relation

We have the first law for infinitesimal change

dE = d̄Q + d̄W

or, specifically to reversible change

dE = d̄Qrev + d̄W rev.

We have already found expressions for d̄W rev for a variety of thermodynamic systems
in Sec. 1.6. Now, we also have one for d̄Qrev = TdS. Therefore

dE = TdS − PdV. (29)

This is the fundamental thermodynamic relation (for a fluid). Note:
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• Eq. (29) involves only state variables, so it must be for all changes, not just
reversible ones.

• For other systems the term −PdV = d̄W rev for a fluid is just required by the
corresponding expression for that system (e.g., σdA for a surface film, −m · dB
for a paramagnet, etc., as in Sec. 1.6).

• Eq. (29) will be used over and over again in this course; it is one of the most
important equation we will meet (and you must remember it!)

Math note: In general, if Z is a function of two variables (X, Y ), we write by
convention,

Z = Z(X, Y ).

The small changes in X an Y will result in the change in Z, written as

dZ =

(

∂Z

∂X

)

Y

dX +

(

∂Z

∂Y

)

X

dY, (30)

where
(

∂Z
∂X

)

Y
is partial derivative of Z(X, Y ) with respect to variable X while keep-

ing the other variable Y as parameter. Comparing Eq. (30) and Eq. (29) of the
fundamental relation, we derive that

• internal energy is a a function of (S, V ), E = E(S, V ); and

• we have two general, useful relations

T =

(

∂E

∂S

)

V

, −P =

(

∂E

∂V

)

P

,

i.e., if the function E(S, V ) is known (from statistical mechanics, for example),
then temperature and pressure can be defined/calculated by simply taking par-
tial derivatives as above.

• Further relation (Maxwell relation) can be obtained by taking 2nd order deriv-
ative,

∂2E

∂V ∂S
=

∂2E

∂S∂V
namely,

(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

which will be discussed more fully and exploited later.

[Refs.: (1) Mandl 4.1; (2) Bowley and Sanchez 2.5; (3) Zemansky 8.14.]
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2.8 Thermodynamic Potentials

So far we have seen two state functions, internal energy E and entropy S. And we
know 2nd law can be used to predict the state of a thermodynamic system. For
example, if a system in isolation can have several possible states with different values
of entropy, we know it must in the state with maximum entropy.

We revisit the fundamental thermodynamic relations of Eq. (29), also known as
1st and 2nd laws of thermodynamics for a hydrodynamic system:

dE = TdS − PdV.

In this form it suggest that the natural variables in which to express E are S and V ,
i.e., E = E(S, V ), as disussed earlier. Hence

T =

(

∂E

∂S

)

V

; P = −
(

∂E

∂V

)

S

. (31)

It is also easy to re-express the fundamental relation as

dS =
1

T
dE +

P

T
dV (32)

where S is a state function, S = S(E, V ), and E is a variable. So we have the relations

1

T
=

(

∂S

∂E

)

V

,
P

T
=

(

∂S

∂V

)

E

. (33)

From Eq. (29), we conclude that E = const. for process at constant volume
and constant entropy. Because these are not exactly the most common experimental
condition (S is not directly measurable), it is useful to introduce other state functions,
called thermodynamic potentials, which are constant when others of variables
(such as V, P, T ) are held fixed. Note also that a system with constant E, V is usually
an isolated system. However, more often than not, we are dealing with a system
not in isolation but in thermal contact with its environment. This is another reason
that it is more convenient to use other state functions (thermodynamic potentials) to
predict its behavior.

(a) Helmholtz Free Energy F :

F ≡ E − TS . (34)

F is useful for systems at constant temperature.
Theorem: In an isothermal transformation, the change of free energy of a system is
less or equal to the work done on the system.
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Proof: Let a system undergo an arbitrary isothermal transformation from state A
to state B. We have

∫ B

A

dQ

T
≤ SB − SA .

Since T is constant, ∆Q ≤ T∆S. Using the 1st law, ∆E = ∆Q + ∆W , or

∆W = ∆E − ∆Q ≥ ∆E − T∆S, or ∆W ≥ ∆F

The equality holds if the transformation is reversible.
If ∆W = 0, then: for mechanically isolated system at a constant temperature,

free energy never increases.
Corollary: In a mechanically isolated system at a constant temperature, the state
of equation is the state of minimum free energy, i.e., system evolves until F reaches
a minimum.

In an infinitesimal reversible transformation, we have

dF = −PdV − SdT . (35)

Since F = F (V, T ) is a state function,

P = −
(

∂F

∂V

)

T

, S = −
(

∂F

∂T

)

V

. (36)

Hence, if the function F = F (V, T ) is known, P and S can be determined. F is
useful for a system under a transformation of constant T and V because F = F (V, T )
is constant. F plays an important role in statistical mechanics as we will see later.
Taking 2nd order derivatives in Eqs. (36) , since

(

∂

∂T

)

V

(

∂F

∂V

)

T

=
∂2F

∂T∂V
=

∂2F

∂V ∂T
=

(

∂

∂V

)

T

(

∂F

∂T

)

V

we have, from Eq. (36)
(

∂P

∂T

)

V

=

(

∂S

∂V

)

T

(37)

which is one of the so called Maxwell relations.
Example: Consider a gas in a cylinder at constant T , with a piston dividing the

cylinder in two. See Figure. If the piston is released, what is its equilibrium position?

Figure 9
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By corollary above, it must be a minimum of F . Consider two parts as our whole
system. The total Helmholtz free energy

F = F1(T, V1) + F2(T, V2).

Consider a small change from equilibrium (but no work done on the whole), i.e.,
the piston moves a little, then δF = 0, since the free energy at the equilibrium is a
minimum. We have

0 = δF =

(

∂F1

∂V1

)

T

δV1 +

(

∂F2

∂V2

)

T

δV2 .

But V1 + V2 = constant, δV1 = −δV2,

0 =

[(

∂F

∂V1

)

T

−
(

∂F

∂V2

)

T

]

δV1.

As δV1 is an arbitrary change, we must have
(

∂F1

∂V1

)

T

=

(

∂F2

∂V2

)

T

, or P1 = P2 ,

according to Eq. (36). This is intuitively obvious.
(b) Gibbs free energy:

G ≡ F + PV = E − TS + PV . (38)

Theorem: In a system kept at constant temperature and pressure, G never increases.
Corollary: For a system kept at constant temperature and pressure, the equilibrium
state is the state of minimum Gibbs potential.
Proof: For T = constant, we already have ∆W ≤ −∆F. If the pressure is kept
constant, then ∆W = P∆V. Then

P∆V + ∆F ≤ 0, or ∆G ≤ 0,

i.e., the system can slowly evolve until G is at the minimum.
In an infinitesimal reversible transformation

dG = −SdT + V dP, (39)

hence G is a function of T, P , G = G(T, P ) and

S = −
(

∂G

∂T

)

P

, V =

(

∂G

∂P

)

T

. (40)
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And we have the second Maxwell relation by taking second order derivative

(

∂S

∂P

)

T

= −
(

∂V

∂T

)

P

. (41)

Note: The Gibbs free energy G is constant when T and P are fixed - just the con-
ditions for phase transitions (e.g., water boiling or freezing); also relevant to chemical
equilibrium (reactions in contact with a heat bath at constant pressure).

(c) Enthalpy H :
H ≡ E + PV (42)

and correspondingly
dH = TdS + V dP (43)

hence H = H(S, P ) and

T =

(

∂H

∂S

)

P

, V =

(

∂H

∂P

)

S

. (44)

And the corresponding Maxwell relation

(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

. (45)

Recall Q3 of Example Sheet 1, heat absorbed at constant pressure is equal to the
change in enthalpy, ∆Q = ∆H at P = constant. At phase transition, this heat
is referred to as laten heat, a concept you learned in your first year unit ”Gases,
Liquids and Solids”.

In summary:

• E = E(S, V ) → dE = TdS − PdV or S = S(E, V ) → dS = 1
T
dE + P

T
dV

• F = F (T, V ) → dF = −SdT − PdV

• G = G(T, P ) → dG = −SdT + V dP

• H = H(S, P ) → dH = TdS + V dP

Question: What is the corresponding Maxwell relation from the fundamental ther-
modynamic relation dE = TdS − PdV ?

[Refs.: (1) Mandl 4.4-4.5; (2) Bowley and Sanchez 2.6; (3) Zemansky 10.1-10.3.]

24



2.9 Open systems and phase equilibrium conditions

Up till now we have mostly deal with closed systems (where no matter enters or
leaves, i.e., N = const.). Let’s generalise to open systems (where matter can be
exchanged with the surroundings). This situation can also be useful in describing
mixtures of substances or mixtures of phases of the same substances, as we will
see.

We need to extend the fundamental thermodynamic relations of Eq. (29), for a
hydrostatic system,

dE = TdS − PdV

to include the energy change due to adding or subtracting particles, namely

dE = TdS − PdV + µdN (46)

where the new intensive variable µ is referred to as chemical potential, the energy
required to add a particle to the system. The internal energy is now a function of three
variables, E = E(S, V, N) and we have a new thermodynamic relation, in addition to
the original two,

T =

(

∂E

∂S

)

V,N

, P = −
(

∂E

∂V

)

S,N

, µ =

(

∂E

∂N

)

S,V

. (47)

By rearranging Eq. (46),

dS =
1

T
dE +

P

T
dV − µ

T
dN, (48)

i.e., S = S(E, V, N), and

1

T
=

(

∂S

∂E

)

V,N

,
P

T
=

(

∂S

∂V

)

E,N

,
µ

T
= −

(

∂S

∂N

)

E,V

. (49)

Similarly, we have the following relations for the other thermodynamic potentials
of an open system as

dF = −SdT − PdV + µdN (50)

dG = −SdT + V dP + µdN (51)

dH = TdS + V dP + µdN, (52)

and the new partial derivatives are given by, respectively

µ =

(

∂F

∂N

)

T,V

=

(

∂G

∂N

)

T,P

=

(

∂H

∂N

)

S,P

. (53)
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Theorem: G = µN . This simple theorem can be easily proved by using the fact
that G is extensive, i.e., G = g(T, P ) · N together with Eq. (53) for the definition of
µ.

We now discuss the conditions for the coexistence of two phases of a given sub-
stance. Consider the entropy for each of the phases as a function of its internal
energy, volume and particle number, namely S1 = S1(E1, V1, N1) for phase 1 and
S2 = S2(E2, V2, N2) for phase 2. The total entropy of the whole system is the sum of
the two

S = S1(E1, V1, N1) + S2(E2, V2, N2),

if we ignore the small boundary contributions (involving small numbers of particles
of both phases at the phase boundary). Each of the phase is an open system. But
the whole system (the two phases together) is an isolated system; its total entropy
is maximum at equilibrium. This theorem can be used to show that all intensive
thermodynamic variables of the two phases at equilibrium must be equal
respectively, namely

T1 = T2, P1 = P2, µ1 = µ2. (54)

The proof can be made by considering a small change in the system as whole and
using the maximum entropy condition δS = 0. For details, see Q2 of Example Sheet 7.

So far we have discussed all fundamental physics of thermodynamics systems, in-
cluding all physical quantities (state variables, state fucntions and thermodynamics
potentials) and their relations. In the next few sections we will apply these princi-
ples to more specific situations for deeper and better understanding, including some
mathematical exercises relating to Maxwell relations.

[Refs.: (1) Mandl 5.3; (2) Bowley and Sánchez 2.5-2.6, E.3; (3) Zemansky and
Dittman 10.6, 10.8.]

2.10 The approach to equilibrium

We have seen that for isolated systems ∆S ≥ 0. Completely generally if a change can
take place that increase the entropy, it will, e.g., 2 gases allowed to mix will do so
fully, thereby maximising S. For non-isolated systems, ∆Suniverse ≥ 0; but it would
still be nice to refer only to the system, if possible. There is a way to do this. If T0, P0

refer to the temperature and pressure of the surroundings, we define the availability
as

A ≡ E − T0S + P0V. (55)

We find, for any spontaneous change

∆A < 0. (56)
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The proof is easy. We imagine a system in thermal contact with its surroundings at
T0 and at the pressure P0 of the surroundings. Imagine a spontaneous change during
which heat Q is absorbed by the system, which changed volume by ∆V . W = −P0∆V
is done on the system. The 1st law Q = ∆E + P0∆V and

∆Suniverse = ∆S − Q

T0
=

1

T0
(T0∆S − ∆E − P0∆V )

and ∆Suniverse ≥ 0 means
∆(E − T0S + P0V ) ≤ 0.

QED.
Now, let S represent any possible variation in a quantity, not necessarily leading

to an equilibrium state. Various scenarios:

(a) Processes at constant T, P , ∆A = ∆G, hence

(∆G)T,P ≤ 0 for all spontaneous changes (57)

G(T, P ) is minimum at equilibrium as we have seen earlier.

(b) Processes at constant T, V , ∆A = ∆F . and

(∆F )T,V ≤ 0 (58)

for all spontaneous changes. Hence F (T, V ) is minimum at equilibrium as we
have seen earlier.

(c) Isolated systems (i.e., const. V, E): ∆A = −T0∆S

(∆S)E,V ≥ 0 (59)

for all spontaneous change, i.e., S(E, V ) is maximized at equilibrium (maximum
entropy theorem).

[Refs.: Mandl 4.2; (2) Bowley and Sanchez 2.9; Zemansky 15.8.]

2.11 Available work

Let’s now consider the maximum amount of work (available work) which can be ex-
tracted from a system initially out of equilibrium with its surroundings at temperature
T0 and pressure P0, as schematically shown in the following diagram.
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Figure 10
Firstly, if it expands it must do work to push back atmosphere, so P0∆V is not

available. Secondly, if its entropy decreases (as in cooling) it must give heat Qout to
the surroundings, where ∆S + Qout/T0 ≥ 0 or Qout ≥ −T0∆S. All above means that
during a change not all of the internal energy change (decrease) ∆E is available to
do useful work. We have from 1st law

∆E = Qin + W = −Qout − w,

or
w = −∆E − Qout ≤ −∆E + T0∆S

where w is the total work done by the system. Let w = wuseful + P0∆V , so

wuseful + P0∆V ≤ −∆E + T0∆S or wuseful ≤ −∆(E − T0S + P0V ) = −∆A

where A = Availability from Eq. (55). Hence

wuseful ≤ −∆A, (60)

where equality holds only for reversible process, the maximum useful (available) work.
This also explains why A introduced earlier is actually called availability.

Note:

(a) T0, P0 are that of the surroundings, not those of the system (although, of course,
they end up the same)

(b) For all spontaneous changes, as shown in Eq. (56), ∆A ≤ 0 and hence wuseful ≤
|∆A| for all spontaneous changes

(c) For system starting and ending at T0, P0: wuseful ≤ −∆G
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(d) For system at constant volume and starting and ending at T0: wuseful ≤ −∆F

Example: What is the maximum useful work that can be obtained by cooling 1 mole
of an ideal gas at constant volume from a temperature T to the temperature T0 of
the surroundings?
Solution: ∆V = 0,

wmax = −∆E + T0∆S

(Note ∆S < 0 for cooling.) For an ideal gas

∆E = CV ∆T = CV (T0 − T ) < 0

as CV = const. Also, ∆S will be the same as for a reversible process, dS = d̄Q/T =
CV dT/T (Ex. 1 in Sec. 2.6),

∆S = CV

∫ T0

T

dT

T
= −CV ln

T

T0

< 0.

The maximum work

wmax = CV (T − T0) − CV T0 ln
T

T0
.

The rest of the energy is discarded to the surroundings to ensure no overall decrease
in entropy. Note: it is not difficult to prove that the above expression for wmax is
positive for any T > T0. You may care to prove it for yourself.

2.12 Clausius-Clapeyron equation

We now turn our attention to situations where two phases of a given substance co-exist
(e.g., ice and water at 00C; for which if no heat is exchanged with the surroundings,
the mixture will persist indefinitely). In general, different phases have different in-
ternal energies, different entropies, different densities, etc. In Section 2.9 (and Q1 of
Example Sheet 6) we have proved that temperatures and pressures of the two phases
at equilibrium are equal respectively. We wish to find the equation of coexistence
curve of the two phases.

We saw above in Section 2.8 that at constant T, P the Gibbs free energy is min-
imized. Define g1 and g2 to be the ”specific Gibbs free energy” (i.e., per unit mass)
for each phase. If the phases have masses m1 and m2,

G = m1g1 + m2g2.

At equilibrium with T0, P0 fixed δG = 0, we have

g1δm1 + g2δm2 = (g1 − g2)δm1 = 0,
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where in the last equation, we have used the fact that total matter is conserved,
δm1 = −δm2. Therefore, the condition for 2 phases to co-exist at given T0, P0,

g1 = g2. (61)

In fact this is quite general; it also holds for isolated systems. For most choices of
T0, P0 only one phase will exist (e.g., all the water will freeze at all the ice will melt).
A typical coexistence curve on a P -T plot is shown in Figure 11.

Figure 11
An obvious equation is to ask for the equation of the co-existence line. This is

provided by the so-called Clausius-Clapeyron equation: Consider 2 infinitesimally
close points a and b on the co-existence curve g1 = g2, as shown in Figure 12.

Figure 12

g
(a)
1 = g

(a)
2 , g

(b)
1 = g

(b)
2 .

So, if dg is the difference in g1 between points a and b, it is the same for both phases

dg1 = dg2.
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But, from Eq. (39), dg = −sdT + vdP with s ≡ S/m, v ≡ V/m,

dg1 = −s1dT + v1dP

dg2 = −s2dT + v2dP

or (s2 − s1)dT = (v2 − v1)dP . Hence

dP

dT
=

s2 − s1

v2 − v1
=

L

T∆v
(62)

where we have used ∆S = Q/T for an isothermal process, and L = Q is simply the
latent heat (per unit mass) of the substance at given P, T . Eq. (62) the Clausius-
Clapeyron equation and it gives the slope the co-existence curve at any point (P, T ).
We show in Figure 13 the phase diagram for water.

Figure 13
Note: Water is strange in that the solid-liquid coexistence curve has negative slope.
This is because ice is less dense than water (putting ice under pressure causes it to
melt). Most liquids behave oppositely.

Example: At what temperature does water boil at the top of Mt. Everest? (input
data: pressure at top of Everest is 0.36 atm; the density of water vapour at 100 ◦C is
0.598 kg m−3 and the latent heat is 2.257 × 103 J g−1).
Solution: The change is volume of 1 g is well approximated by volume of vapour
phase alone (since it is about 103 less dense than liquid)

∆v = vg − vl ≈ vg =
1

ρg

.
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Hence

dP

dT
=

L

T∆v
≈ Lρg

T 0
=

2.257 × 106 J kg−1 × 0.598 kg m−3

373 K
= 3.62 × 103 Pa K−1.

Hence, by linear extrapolation ∆P/∆T = 3.62 × 103 Pa K−1. Use given data ∆P =
−0.64 atm and 1 atm = 1.013 × 105 Pa,

∆T ≈ −0.64 × 1.013 × 105

3.62 × 103
K ≈ −17.9 K,

i.e., boiling point at top of Everest is about 355 K or 82 ◦C. Notice that the difference
between the two temperatures 373 and 355 K is small, hence the linear extrapolation
made is valid.

[Refs.: (1) Mandl 8.1-8.4; (2) Bowley and Sánchez 11.1,11.4,11.5; (3)Zemansky
11.3-11.5.]

2.13 Maxwell’s relations: A review

As should be clear by now, the ability to manipulate partial derivatives is a vital tool
in thermodynamics. Since it is so important let’s now have a review.

A basic rules are

(1) identify the independent variables, e.g., u and v

(2) If w = w(u, v) is a function of u and v, the partial derivative of w with respect
to u with v held fixed is written as (∂w/∂u)v

(3) Hence
(

∂v

∂u

)

v

= 0 =

(

∂u

∂v

)

u

,

(

∂u

∂u

)

v

= 1 =

(

∂v

∂v

)

u

,

etc.

(4) The order doesn’t matter if we take more than one partial derivative, i.e.

∂

∂v

)

u

(

∂w

∂u

)

v

=
∂

∂u

)

v

(

∂w

∂v

)

u

, (63)

where
∂

∂v

)

u

(

∂w

∂u

)

v

≡
(

∂

∂v

(

∂w

∂u

)

v

)

u

.
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(5) If both u and v change infinitesimally, the corresponding change in w is

dw =

(

∂w

∂u

)

v

du +

(

∂w

∂v

)

u

dv. (64)

(6) We can just as well take, e.g., v and w to be the independent variables,and from
w = w(u, v) solve for u = u(v, w). Now

du =

(

∂u

∂v

)

w

dv +

(

∂u

∂w

)

v

dw. (65)

(7) If we compare Eqs. (64-65) with v = Const, i.e. dv = 0, we have

dw =

(

∂w

∂u

)

v

du, du =

(

∂u

∂w

)

v

dw

hence the reciprocal theorem, obviously
(

∂w

∂u

)

v

=
1

(

∂u
∂w

)

v

. (66)

(8) From Eq. (64), if w = const.,

(

∂w

∂u

)

v

du = −
(

∂w

∂v

)

u

dv.

Take ∂/∂v)w of both sides

(

∂w

∂u

)

v

(

∂u

∂v

)

w

= −
(

∂w

∂v

)

u

,

or, after multiplying both sides by
(

∂u
∂w

)

v
and using the reciprocal theorem of

Eq. (66)
(

∂w

∂u

)

v

(

∂u

∂v

)

w

(

∂v

∂w

)

u

= −1 (67)

which is not at all obvious. In particular, the factor (−1) is counter-intuitive!
Write Eq. (67) using Eq. (66)

(

∂u

∂v

)

w

= −

(

∂w
∂v

)

u
(

∂w
∂u

)

v

= −

(

∂u
∂w

)

v
(

∂v
∂w

)

u

. (68)
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Note: Eqs. (66-68) are out main results. In other contexts we often neglect to
specify what is being held constant (i.e., write ∂f∂x instead of (∂f∂x)y when it is
obvious that f = f(x, y). In thermodynamics, where we are often changing variables
from one set to another this can be fatal: Always specify what’s held constant. (The
only exception is that mostly we deal with a fixed amount of substance, N = no. of
molecules = const. and we don’t always bother to write, e.g. (∂E/∂S)V,N rather
than the sloppier (∂E/∂S)V if it is absolutely obvious from context that N is always
constant.)

Now return to physics. The fundamental thermodynamic relations of Eq. (29)

dE = TdS − PdV

suggested E = E(S, V ) so that

dE =

(

∂E

∂S

)

V

dS +

(

∂E

∂V

)

S

dV.

Comparison shows

T =

(

∂E

∂S

)

V

, −P =

(

∂E

∂V

)

S

as we have seen in Eq. (31). By taking a further derivative as Eq. (63)

∂

∂V

)

S

(

∂E

∂S

)

V

=
∂

∂S

)

V

(

∂E

∂V

)

S

,

we have the first of 4 Maxwell relations
(

∂T

∂V

)

S

= −
(

∂P

∂S

)

V

. (69)

The other three Maxwell relations are derived by other three thermodynamic relations
in dF , dG and dH as discussed in Sec. 2.8, namely

(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

, (70)

and
(

∂S

∂P

)

T

= −
(

∂V

∂T

)

P

, (71)

and finally
(

∂T

∂P

)

S

=

(

∂V

∂S

)

P

. (72)

34



Eqs. (70) and (71) are of particular useful in getting rid of S in favour of experi-
mentally measurable P, V, T .

Note: The forms of the 4 Maxwell relations: the dependent variables are always
one of (T, S) and one of (P, V ). The independent variables are then the other two [i.e.,
never get terms like ∂T/∂S or ∂P/∂V or ∂/∂S)T or ∂/∂V )P ]; we get a minus sign of
both S and P occur as variable on the same side of the equation; not otherwise.

[Refs.: (1) Mandl 4.4-4.5; (2) Bowley and Sánchez 2.6, E.1-E.2; (3) Zemanksy
40.5.]

2.14 Heat capacities and calculating entropy

Typically, for a thermodynamic system, we can determine its equation of state and
heat capacities by experimental measurements. How do we determine other physical
quantities such as entropy from these measurements? We shall demonstrate the
Maxwell relations discussed earlier are very useful for this purpose.

By definition, a heat capacity C ≡ d̄Qrev/dT , depends on the process, since Qrev

is not a state variable. We use C for heat capacity and c for specific heat capacity
(i.e., per mole or unit mass).

Since d̄Qrev = TdS by second law, we have

CP = T

(

∂S

∂T

)

P

(73)

for heat capacity at constant pressure and

CV = T

(

∂S

∂T

)

V

(74)

for heat capacity at constant volume.
If we take S = S(T, V ),

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV.

By Eqs. (74) and Maxwell relation Eq. (70),

TdS = CV dT + T

(

∂P

∂T

)

V

dV. (75)

Alternatively, use S = S(T, P )

dS =

(

∂S

∂T

)

P

dT +

(

∂S

∂P

)

T

dP.
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By Eqs. (73) and Maxwell relation Eq. (71),

TdS = CPdT − T

(

∂V

∂T

)

P

dP. (76)

Integration of equation (75) or (76) will give us entropy.

Example Entropy of an elastic string. Given heat capacity Cl at constant length l
and equation of state (a relation between string tension Γ, temperature T and length
l) Γ = Γ(T, l), determine its entropy by using Maxwell relations.
Solution The work done on the string by stretching is

d̄W = Γdl,

and the fundamental thermodynamic relation for a string is

dE = TdS + Γdl.

We need the Maxwell relations involving Helmholtz free energy. We write the free
energy dF = d(E −TS) = −SdT +Γdl, comparing with the general differential form

dF =

(

∂F

∂T

)

l

dT +

(

∂F

∂l

)

T

dl.

we have

−S =

(

∂F

∂T

)

l

, Γ =

(

∂F

∂l

)

T

.

Take the second order derivative and using the fact that

∂2F

∂l∂T
=

∂2F

∂T∂l

we have the corresponding Maxwell relation,

(

∂S

∂l

)

T

= −
(

∂Γ

∂T

)

l

.

The heat capacity at constant length is, using d̄Q = TdS,

Cl =

(

d̄Q

dT

)

l

= T

(

∂S

∂T

)

l
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where we take the entropy S(l, T ) as a function of l and T . The differential form of
entropy is, in general

dS =

(

∂S

∂T

)

l

dT +

(

∂S

∂l

)

T

dl.

Therefore, the differential entropy is given by, using the Maxwell relation and the
equation for heat capacity,

dS =
Cl

T
dT −

(

∂Γ

∂T

)

l

dl.

If Γ(l, T ) and Cl are known, the above equation can be used to determine the entropy.
For details, see Q2 of Example Sheet 6.
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