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1 Classical Thermodynamics: 1st law

1.1 Introduction

We first review related year 1 courses (such as PHYS 10352 - Properties of
Matter) and introduce some basic concepts in thermodynamics.

Microscopic systems: one or few particle systems, e.g., a hydrogen
atom with one electron moving about one proton, a water molecule (H2O),
etc.

Macroscopic systems: systems consisting of very large number of par-
ticles (∼ 1023, Avogadro’s number 6 × 1023/ mole), e.g., a piece of metal, a
cup of water, a box of gas, etc.

Laws that govern the microscopic world are the Newton’s laws (classical),
or Schrödinger equation (quantum), etc. In principle, these laws are applica-
ble to the macroscopic systems, but it is often impractical to solve individual
equation for each particle of a macroscopic system.

Furthermore, there are new quantities and new laws which govern the re-
lations between these new quantities, in the macroscopic world. The subject
of thermal and statistical physics is the study of particular laws which govern
the behavior and properties of macroscopic bodies.

For example, if we film the collision of two balls in snooker, we cannot tell
which way time is running. This is a demonstration of the time invariance
of the laws in microscopic world, such as Newton’s laws and Schrödinger
equation. Consider another example. If we set a volume of gas molecules
expand into a larger volume by removing a partition, by experience we know
that after equilibrium the gas will not go back to the restricted region. This
implies that there is a direction in time.

Equilibrium state: a state of a macroscopic system which is indepen-
dent of time. By our experience, we know that an isolated system will always
move to the equilibrium state. For example, hot water will cool down and
ice will melt until they reach the temperature of its environment. Ques-
tions: what is the isolated system in these cases? Answer water (or ice) +
environment.

Briefly, Thermodynamics is a phenomenological science which determines
the relations between observable macroscopic quantities, such as temperature
T , pressure P , etc. Kinetic theory attempts to understand the relationships
in terms of fundamental interactions between individual particles, etc. And
statistical mechanics provides foundation for the equilibrium properties from
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the microscopic point of view. However, it does not say how a system ap-
proaches equilibrium and it cannot overcome the anomaly of the direction of
time.

The basic assumption in thermodynamics is that only a few macroscopic
quantities (thermodynamic parameters) are needed to describe the equilib-
rium state of a system. The following is a list of ”things” you should know
from your year 1 courses:

Basic Definitions in Thermodynamics

1. Thermodynamic (TD) systems: any macroscopic system which consists
of a very large number of separate particles (∼ 1023, Avogadro’s number
6 × 1023/mole), e.g., a piece of metal, a cup of water, etc.

2. TD variables (parameters): measurable macroscopic quantities associ-
ated with the system and are defined experimentally, e.g., P, V, T, Ha

etc., where Ha is an applied field. These quantities are either inten-

sive or extensive, i.e., either independent or linearly dependent on the
amount of matter. Question: which of these are intensive and which
are extensive?

3. A TD state is specified by a set of all values of all TD parameters
necessary for a complete description of the system.

4. State functions: any function of thermodynamic variables P, V, T, etc.
Like TD variables, a state function is either extensive or intensive.
Example of state functions are internal energy, entropy, etc. Question:
what is entropy?

5. Thermodynamic equilibrium prevails when TD state of system does
not change with time. TD is concerned with equilibrium. All change
of state are supposed to occur through successive states of equilibrium.

6. Equation of state relates the TD variables for a state in equilibrium,
e.g., f(P, V, T ) = 0 for a gas. Equation of state can not be deter-
mined by thermodynamics. It can only be obtained by either many
observations (experiments) or from microscopic analysis, i.e. statisti-
cal mechanics.
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7. Thermodynamic transformation: a change of state. If the initial state
is an equilibrium state, then the transformation can be brought about
only by change in the external condition of the system, The trans-
formation is quasi-static if the conditions change so slow that at any
instance the system is approximately in equilibrium. It is reversible if
the transformation reverses its history in time when the external condi-
tions retrace their history. A reversible transformation is quasi-static;
converse not necessary true.

8. P -V diagram for a gas: the projection of the equation of state onto
the P -V plane. A reversible transformation is a continuous path in the
P -V plane. Specific paths are called isotherms (constant temperature)
and adiabats (no heat exchanged). Note: If a TD system is not at an
equilibrium state, its TD variables are not defined and a path in P -V
plane cannot be drawn.

9. Work done on a gas:
W = −P∆V

where the minus sign denotes the decrease in volume due to compres-
sion. More examples will be given later. Note: work done by a gas is
−W = P∆V (work done on a gas - gas energy increases, work done by
a gas - gas energy decreases).

10. Heat: what is absorbed by the system if its temperature rises. When
no work is done, the heat is given by

Q = C ∆T

where C is the heat capacity. For different ways of heating the system
through ∆T , Q is different. Thus C depends on method of heating.
We usually discuss CP (constant pressure) and CV (constant volume)
for a gas system. Heat capacity per unit mass (or per particle) is called
specific heat. We will learn work W and heat Q are not state function.

11. Thermal isolation: no exchange of heat with outside world. May be
achieved by surrounding system with an adiabatic wall. Any transfor-
mation occurring in thermal isolation is said to take place adiabatically.
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12. Equation of state for an ideal (perfect) gas (the behavior of all gases
when sufficiently dilute). The variables are P, V, T and from experi-
ment, the equation of state is

PV = NkBT or PV = nRT

where N is the number of particles, kB = 1.38 × 10−23 Joule/degree,
is the Boltzmann’s constant, and R = 8.31 Joule mole−1 deg−1 with
n = N/NA with NA = 6.02 × 1023 molecules/mole.
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1.2 The first law of thermodynamics

As mentioned before, the assumption in TD is that there are only a few
numbers of macroscopic variables for a complete description of a state of a
system. Definitions of physical state functions of these variables, the con-
straints of and relations between these state functions are the main subject
of thermodynamics.

The main mathematics in TD: functions of many variables and their
(partial) derivatives.

1st law: In an arbitrary TD transformation, let Q = net amount of heat
absorbed by the system, and W = net amount of work done on the system.
The 1st law states

∆E = Q + W (1)

is the same for all transformations leading form a given initial state to a final
state (Joule’s law), where E is the total energy (or internal energy, or just
energy) of the TD system. Clearly, E, Q and W are all measured in energy
unit (SI: Joule).

Mancunian James Joule (born Salford 1818, died Sale 1889, brewer and
physicist) did many experiments in the 1840’s to establish the equivalence of
heat and work as forms of energy.

Please note: (a) Thermally isolated system: contained within adiabatic
(perfectly insulated) walls. we have

Q = 0, ∆E = W.

For mechanically isolated system: W = 0. Hence ∆E = Q, all heat turns to
internal energy. (b) Internal energy E is a function of state, a macroscopic
variable, but has its origin of in microscopic constituents. In general, it is
simply the sum of the kinetic energies of the molecules of the system and
potential energy arising from the interaction force between them.

The first law of thermodynamics is a statement of energy conservation
and defines the internal energy E as an extensive state function. In an
infinitesimal transformation, the first law reduces to

dE = d̄Q + d̄W (2)
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where dE is a total (exact) differential for infinitesimal transformation. How-
ever, d̄Q and d̄W are not exact (Q and W are not state functions); Q and W
in a thermodynamics transformation are process-dependent. All these are
properties of functions of more than one variables.

Since E is a state function, it depends on the TD parameters, say P, V,
and T . Since the equation of state can be made to determine one of these in
terms of other two, we have, for a gas,

E ≡ E(P, V ) = E(V, T ) = E(T, P ) .

Hence

dE =

(

∂E

∂P

)

V

dP +

(

∂E

∂V

)

P

dV .

Two other similar equations can be written.
Consider a gas. In an infinitesimal, reversible transformation, for which

work done by the gas d̄W = −PdV , the heat

d̄Q = dE + PdV. (3)

By the definition of heat capacity at constant V ,

CV ≡

(

d̄Q

dT

)

V

=

(

∂E

∂T

)

V

(4)

and similarly, the heat capacity at constant pressure, using Eq. (3)

CP ≡

(

d̄Q

dT

)

P

=

(

∂E

∂T

)

P

+ P

(

∂V

∂T

)

P

. (5)

The difference between CV and CP clearly shows d̄Q is not exact, but depends
on the details of the path, namely, heat Q is not a state function.

Note: Many authors use d̄W (= PdV ) to mean the work done by the
system. We use d̄W = −PdV to mean work done on the system and lower
case d̄w = −d̄W = PdV to mean work done by the system.

Example: Consider 2 different ways of taking a fixed mass of an ideal gas
from an initial state (V0, T0) to a final state (2V0, T0): (a) Free expansion in
a container with adiabatic walls as shown in the top of Fig. 1 Clearly Q = 0
and W = 0. We have

∆E = 0.
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For ideal gas, E = E(T ) (more discussion of this equation later). Hence
T = T0 = const. (b) Expansion against an external force, with T held fixed
at T0 by contact with a heat bath as shown in the bottom two diagrams of
Fig. 1. In this case, work is done by the gas.

Fig. 1 (a) Free expansion (top two diagrams). (b) Expansion
against an external force (bottom two diagrams).

As ∆E = 0, we have

Q = −W > 0, W = −
∫

Fdx < 0.

Conclusion of these two examples are: Q and W are not state function but
sum of them E is.

1.3 Real and Ideal gases: A Review

All gases which cannot be easily liquefied are found experimentally obey the
following two laws:
(a) Boyles’s law

PV = const. at fixed temperature.
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(b) Charles’s law (Gay-Lussac’s law): At constant pressure, the volume of
a gas varies linearly with temperature, say θ on some arbitrary scale, e.g.,
Centigrade,

V = V0

(

1 + θ

T0

)

at fixed P = P0.

where T0 is constant (experiments show T0 nearly same for all gases. If both
laws are obeyed exactly

PV = P0V0

(

1 + θ

T0

)

= P0V0

T

T0

where T = θ + T0 is temperature on an absolute scale. As P and T are
intensive, and V is extensive

PV

T
∝ N

or, the ideal gas law
PV = NkBT = nRT (6)

where kB is the Boltzmann constant, R = kBNA is universal gas constant,
NA is Avogadro’s number, n = N/NA is number of mole. For the case of real
gases, only the limit as P → 0 does the equation of state assume the above
form.

Later in Statistical Physics, we can understand ideal gas microscopically
as a gas with point-like, non-interacting molecules. All gases tend to that of
an ideal gas at low enough pressure. The noble gas (e.g., helium, argon) are
very close to ideal at STP; even our air at STP is quite well approximated
as ideal.

For real gas in general, the internal energy E = E(T, P ) = E(T, V ). For
an ideal gas, this simplifies to E = E(T ), as a function of T only, as we see
below. By definition, the ideal gas satisfies the equation

PV = nRT, E = E(T ) for ideal gas. (7)

Notice that for ideal gas
(

∂E

∂P

)

T

= 0,

(

∂E

∂V

)

T

= 0.

From Eq. (4), for ideal gas,

CV =
dE

dT
, dE = CV dT. (8)
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In general, heat capacity may change with T . But if CV =constant, E =
CV T , after we define zero of energy as E = 0 at T = 0.

The result of statistical mechanics (kinetic theory) show that for an ideal
gas,

E =
νf

2
NkBT =

νf

2
nRT (9)

where νf is the active degrees of freedom. The above equation states that each
molecule has an average internal energy of 1

2
kBT per active degree of freedom.

(i) Monatomic gases, νf = 3; (ii) diatomic gases, νf = 5 (3 translational and
2 rotational; vibrational modes are frozen out).

We can also prove
CP − CV = nR; (10)

for ideal gas. And for reversible adiabatic process on an ideal gas

PV γ = const., γ =
CP

CV

. (11)

See Ex. 2. For a monatomic ideal gas, γ = 5/3; for diatomic ideal gas,
γ = 7/5.

Now we consider real gases. Many attempts exist to modify the ideal gas
equation of state for real gases. Two common ones are:
(a) The hard-sphere gas: we continue to neglect the interaction except at
short range where we treat the molecules as hard spheres

V (r) =
{

∞, for r ≤ r0;
0, for r > r0.

(12)

Most of the ideal gas results continue to hold except V → V − nb, where b
is the ”excluded volume”, proportional to the volume occupied by 1 mole of
gas (i.e., b ∝ NAr3

0
. The equation of state for a hard sphere gas becomes

P (V − nb) = nRT, or P (V − Nβ) = NkBT, β =
b

NA

.

(b) The van der Waals gas. Apart from the hard-sphere interaction at short
distance, we now allow the weak intermolecular attraction at larger distances,
as shown in Fig. 2. The extra attraction for r > r0 clearly reduces the pres-
sure for a given V and T , since a molecule striking the vessel wall experiences
an additional inward pull on this account. Call this intrinsic pressure π. So
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if the observed pressure is P and that expected if there were no attraction is
p, p − P = π, the hard-sphere equation of state

P =
nRT

V − nb
→ P + π =

nRT

V − nb
.

Van der Waals argued that π is the result of mutual attraction between bulk
of gas, i.e., the tendency of molecules forming pairs, and hence should be
proportional to N(N − 1)/2 ∝ N2, or to N2/V 2 as it is intensive. Hence
π = an2/V 2.

Fig. 2 A schematic diagram for the interaction potential be-
tween two molecules.

The equation of state for van der Waals gas is

(P + a
n2

V 2
)(V − nb) = nRT

or

(P +
αN2

V 2
)(V − Nβ) = NkBT, (13)

where β = b/NA and α = a/N2

A. [Refs. Zemansky 6; and Ex. Sheets 2 and
3]
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1.4 The first law for cycles

In thermodynamics, we often deal with cycles, changes in a system which
take it through various equilibrium or nonequilibrium states, but ending in
exactly the same state as the start. Clearly, by definition, all state variables
(such as E) are unchanged in a cycle, i.e.

∮

C
dE = 0

around any closed cycle C, or
∮

C
d̄Q +

∮

C
d̄W = 0;

although in general
∮

C d̄Q 6= 0 and
∮

C d̄W 6= 0; and such integrals depend on
the closed path C.

Example: for a heat engine (see Chap. 2.1 below), Q1 is absorbed in
the outward path of cycle, Q2 is emitted in return path of cycle:

∮

d̄dQ =
Q1−Q2 = Q; work done by engine, w = −W = Q1−Q2, so that W +Q = 0.

[Refs. (1) Mandl Chap. 1.3; (2) Zemansky Chap. 3.5]

1.5 Reversible process

Of particular important in thermodynamics are reversible change to a sys-
tem. For example, imagine a cylinder, with a perfectly smooth piston, which
contains gas. If we push with a force infinitesimally larger than that needed
to overcome the internal pressure, the volume will decrease infinitesimally.
Then, if we decrease the force infinitesimally, again, the volume will increase
infinitesimally. This is the hallmark of a reversible process: on infinitesimally
change in the externally applied conditions suffices to reverse the direction of
the change. Clearly, heat flow is only reversible if the temperature difference
between the bodies is infinitesimally small.

For a process to be reversible two conditions must be satisfied: (i) it must
be quasistatic, and (ii) there must be no friction or other hysteresis effects
present. A quasistatic process is defined as succession of equilibrium states
of the system. Clearly it is an idealization, since it requires to be carried
out infinitely slowly. In practice the changes need to be slow compared to
relevant relaxation times involved.

Because reversible process are (infinitely) slow, the system is always es-
sentially in equilibrium. Thus, all its state variables are well defined ans
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uniform, and the state of the system at all times can be represented on a
diagram of the independent variables (e.g., a P − V diagram). A finite re-
versible process passes through an infinite set of such states, and so can be
drawn as a solid line as shown by paths L1 or L2. By contrast, irreversible

process pass through non-equilibrium states and cannot be so represented.
They are often indicated schematically as a straight dashed line joining the
initial and final states i → f . (Note: in such irreversible cases, the work
done during the process is NOT equal to the area under the line, as is the
case for reversible processes.

Fig. 3 Reversible processes (such as L1 and L2) and irre-
versible process between initial (indicated by i) and final (f)
states.

[Refs.: (1) Mandl Chap. 1.3, (2) Bowley and Sanchez Chap. 1.6, (3)
Zemansky Chap. 8]

1.6 Work

We now consider the work done by infinitesimal change in various thermo-
dynamic systems.

(a) Work done in changing the volume of a hydrostatic system (or fluid).
As shown in Fig. 4. let the piston move a distance dx > 0 to compress the
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gas. If the process is frictionless, the work done on the gas is

d̄W rev = Fdx = (PA)dx = P |dV |.

But, note this is positive for compression dV < 0, so

d̄W rev = −PdV (14)

work done on system. If friction is present F > PA. d̄W > −PdV with
dV < 0. In general

d̄W ≥ −PdV ; dV < 0

where equality holds for reversible processes.

Fig. 4 Work done by changing the volume of hydrostatic sys-
tem.

(b) Work done in changing the length of a wire. If the tension in the wire
is Γ and the length is increased from l → l + dl; work done on the wire is

d̄W rev = Γdl. (15)

Note: the sign on RHS now is positive, since d̄W rev > 0 if dl > 0. More
generally, d̄W ≥ Γdl, with equality for reversible processes.

(c) Work done in changing the area of a surface film (e.g. blowing bub-
bles). If the surface tension of the film is σ (energy/unit area) and the area
is increased from A → A + dA, work done on the surface is

d̄W rev = σdA. (16)

Note: similar comment as given in part (b) applies.
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(d) Work done on magnetic materials by changing the field. Different
textbooks take different viewpoints. We will take Mandl’s. The basic prob-
lem is to agree on what is SYSTEM and what is SURROUNDINGS. We
define work done on magnetic material by an external field

d̄W rev = −m · dB (17)

where m =
∫

MdV = MV is the total magnetic dipole moment of the
system, B is the applied magnetic field. Many other text books define d̄W ′ =
V µ0H·dM. Using the definition B = µ0(H + M), we have

d̄W ′ = d(V µ0H · M) − V µ0M · dH

where the first term is a perfect derivative and it is convenient to regard it
as part of internal energy. Hence, in the limit M ≪ H , d̄W ′ reduces to our
definition d̄W given by Eq. (17).

Fig. 5 A magnetizable material in a solenoid.

Note: (i) For a magnetic material the thermodynamic basic variables are
(B, m, T ); and (P, V, T ) for a gas, (Γ, l, T ) for a stretched wire and (σ, A, T )
for a surface film. (ii) If we represent reversible process by lines on a P − V
plot for a fluid (or a Γ− l plot for a stretched wire etc.) then the magnitude
of the work is equal to the area under the line. Examples are shown in Fig. 6.
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Fig. 6 A magnetizable material in a solenoid.

Work done is compressing from Vi → Vf is

W = −
∫ Vf

Vi

PdV

depends on path. e.g., path A: WA = area under curve A; path B: WB =
area under curve B. The difference WA − WB = −

∮

C PdV =
∮

C d̄W 6= 0
where C is the cycle as shown in Fig. 6.

For examples see Example Sheets 2-4.
[Refs. (1) Mandl Chap. 1.3-1.4, (2) Bowley and Sanchez Chap. 1.6, (3)

Zemansky Chap. 3]

1.7 The zeroth law of thermodynamics and tempera-

ture

After the first law we now turn to the zeroth law! The most basic concept in
thermodynamics (or statistical mechanics) is temperature. What is it? We
have an intuitive feel for it, but it is somewhat elusive. (e.g., a mass which
is twice as large or a force which is twice as strong is easily understood. But
a temperature twice as hot is intrinsically trickier). All attempts to quantify
rest on the zeroth law:

If two bodies are each in thermal equilibrium with the third, then they are

also in thermal equilibrium with each other.
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This is intuitively obvious, but it now permits the definition of something
measurable, called temperature, whereby bodies in thermal equilibrium are
at the same temperature.

To measure temperature we can use any property of matter that change
when heat is absorbed or emitted (e.g., resistance of a platinum wire, the
volume (and hence length) of a volume of liquid mercury in a glass tube, the
pressure of a given quantity of gas in a fixed volume, etc.) Such devices can be
used to verify the zeroth law experimentally. They are called thermoscopes
(but since no scale is yet involved, they are not yet thermometers).

A thermometer is just a calibrated thermoscope. Any thermoscope can
be used to define a numerical temperature scale over some range by using two
fixed points (e.g., the ice freezing point and steam boiling point of water).
However, thermoscopes based on the volume of gases finally led to the notion
of an absolute scale based on s single fixed point. This is the ideal gas

temperature scale, measured in Kelvin (K) which is defined to be 273.16
K at the triple point of water (the single fixed point of the scale), agreed
universally in 1954. (Note: The freezing (ice) point of water is some 0.01 K
lower (273.15 K) in temperature than the triple point (273.16 K).) Hence,
by definition

T = lim
P→0

[

PV

(PV )triple

]

× 273.16K (18)

in the Kelvin scale. This scale is based on the ideal gas law and low pressure
(P → 0) limit is taken because all real gases approach ideal behavior in that
limit. The (otherwise strange and arbitrary) value of 273.16 K was simply
chosen so that the new Kelvin scale matched the earlier Celsius scale as
closely as possible (i.e., so that 1 K = 10C). Unlike earlier scales with 2 fixed
points the second fixed point is dispersed with because the zero of the kelvin
scale is absolute zero at which the pressure of an ideal gas vanishes).

Note: Later on we will meet 2 more absolute scales of temperature (one
based on Cannot cycles on Chap. 2 ans one based on statistical concept in
Chap. 3). They will turn out to be identical to each other. However, to avoid
tautology in proving they are identical temperature in the ideal gas scale will
be written θ in this context, compared to temperatures T on the scale based
on the Carnot cycle. We will then prove θ = T . This is the reason why some
books, e.g. Zemansky, used θ for temperature in the early stages. We will
use T throughout, except where necessary to prove the identity θ = T later.

With such an absolute scale kBT (as in the ideal gas law) is just a measure
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of thermal energy at the atomic scale; whereas RT is measure at the molar
(macroscopic) scale. At room temperature T ≈ 300K, kBT ≈ 1

40
eV.

[Refs.: (1) Mandl Chap. 1.2, (2) Bowley and Sanchez Chap. 1.2, (3)
Zemansky Chap. 1.]

Let us move on again, to the 2nd law, Chap. 2. The basic observations
that lead to 2nd law are remarkably simple: (a) When two systems are placed
in thermal contact they tend to come to equilibrium with each other - the
reverse process, in which they revert to their initial states, never occurs in
practice; (b) Energy prefers to flow from hotter bodies to cooler bodies (and
temperature is just a measure of the hotness). It is everyday experience that
heat tends to flow from hot bodies to cold ones when left to their own devices
(i.e., with no heat engines or heat pumps or refrigerators).

As we will see in Chap. 2 the 2nd law is built on these mundane experi-
mental observations.
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