
PHYS40352 Solid State Physics Examples 3

1. Optional problem: In lectures we found an expression for the Pauli spin sus-
ceptibility of an electron gas at low density and high temperature. For ap-
plications to simple metals at ordinary temperatures T � EF /kB , it is also
useful to consider the case of a free-electron gas at zero temperature in a
magnetic field B.

If the up- and down-spin electrons are at equilibrium at T = 0, the total energy
of the electron gas must be a minimum, and the energy will not be reduced
by simply reversing the spin of one electron. This means that the maximum
energy of a spin-up electron must equal that of a spin-down electron,

EF↑ + µBB = EF↓ − µBB,

where B is in the positive z-direction and the signs take account of the fact
that the electron spin is in the opposite direction to its magnetic moment;
EF↑ and EF↓ are the usual Fermi kinetic energies given, e.g., by

EF↑ = ~2k 2
F↑/2m, where kF↑ =

(
6π2N↑/V

)1/3
.

Assume that N↑ and N↓, the numbers of up- and down-spin electrons, are
close to their zero-field values 1

2N , and expand EF↑ and EF↓ to first order in
the small quantities (N↑ − 1

2N) and (N↓ − 1
2N). Hence show that the spin

susceptibility per electron is

χspin,el = −µ0µB(N↑ −N↓)/NB = 3µ0µ
2
B/2EF ,

where EF is the Fermi energy in zero field.

2. Use the expression given at the end of Q.1 to calculate the Pauli spin suscep-
tibility per unit volume of sodium,

χspin = nχspin,el ,

where n = 2.65× 1028 m−3 is the number density of electrons in sodium.

The experimental result for χspin is approximately 1.4×10−5 for sodium; your
calculated result should be of the same order of magnitude. The discrepancy
with experiment is significant and is at least partly due to the neglected effects
of the electron–electron interaction.

3. Apply Hund’s rules to find J, L, S for the ground-states of the rare earth ions
Ce3+ (configuration 4f1) and Er3+ (configuration 4f11). Hence verify two of
the results for

pth = g(J, L, S)
√
J(J + 1)

given in Table 3.1 of the online notes. [Use the formula for the Landé g-factor
quoted elsewhere in the notes.]

4. By using a procedure similar to the one used in Section 3.3.1 of your notes,
show that, in a magnetic field B, the thermal average M of the magnetic
moment of an ion with J = 1 is given by

M =
{

ex − e−x

ex + 1 + e−x

}
gµB ,

where x ≡ gµBB/kBT . Plot (or carefully sketch) the function of x given in
curly brackets, and note the general similarity to the tanh function.

5. Suppose that the interactions of three electrons in a triangular molecule can
be described by the Heisenberg Hamiltonian

Ĥ = J(ŝ1 · ŝ2 + ŝ2 · ŝ3 + ŝ3 · ŝ1)/~2.

Express Ĥ in terms of (ŝ1 + ŝ2 + ŝ3)2 and (by considering the rules for the
addition of angular momentum) show that the ground state energy is 3

4J
in the ferromagnetic case J < 0. What is the degeneracy of the ground
state? Write down one of the ground state wave functions, e.g. the one that
corresponds classically to all the spins being aligned.
The case J > 0 is usually described as being frustrated , because on a triangle
you cannot arrange for all pairs of adjacent spins to be antiparallel. Show
that the ground state energy is − 3

4J , and interpret the wave function in this
case. [Note that a pair of electrons in a singlet state could be interpreted as
a valence bond : the ground state of the hydrogen molecule is a spin singlet.]

6. In the mean-field model of a ferromagnet (with spins s = 1
2 ), we found

m = tanh (mTc/T ) , (1)

where Tc is the critical temperature and m is the magnetization expressed as
a fraction of its maximum possible value, so that |m| ≤ 1. How would (1) be
changed by the presence of an applied magnetic field B? Hence show that,
for T = Tc and in a very weak field B, m will be proportional to B1/3.
[Note: m is small, so you can use the approximation arctanhm ' m+ 1

3m
3.

In experiments, the observed behaviour of m is closer to B1/5: mean-field
theory gives only approximate values for the critical exponents.]


