PHYS40352

1. Over a limited range of composition, an alloy of copper (valence 1) with silicon (valence 4) adopts the BCC structure. Assuming that the free-electron Fermi sphere would fit inside the first Brillouin zone, just touching the zone boundaries, show (as in lectures) that the electron density

$$
n=\frac{k_{F}^{3}}{3 \pi^{2}} \simeq \frac{1}{3 \pi^{2}}\left\{\frac{\sqrt{2} \pi}{a}\right\}^{3}
$$

Hence show that the electron/atom ratio is approximately 1.48. Calculate the proportions (atomic percentages) of copper and silicon in the alloy.
2. For small amounts of zinc, a zinc-copper alloy adopts the FCC structure. As the amount of zinc is increased, this structure (so-called α-brass) remains stable until the electron/atom ratio exceeds 1.38 . This critical value of the electron/atom ratio agrees well with the value 1.36 at which the free electron Fermi sphere just touches the faces of the Brillouin zone that are closest to $\boldsymbol{k}=\mathbf{0}$. Verify the theoretical result 1.36 and calculate the proportions of copper and zinc (valence 2) in this case.
Note: The 8 shortest reciprocal lattice vectors of the FCC lattice are (111) \times $2 \pi / a$ and the vectors related to this by cubic symmetry. The zone faces closest to $\boldsymbol{k}=\mathbf{0}$ bisect these 8 reciprocal lattice vectors. The remaining zone faces (such as the one bisecting $(200) \times 2 \pi / a)$ are further from $\boldsymbol{k}=\mathbf{0}$.
3. Show that the volume of the Jones zone of the diamond structure is $16 \times$ $(2 \pi / a)^{3}$. From this, show that the Jones zone contains enough states to accommodate 32 electrons per cubic unit cell; i.e., 4 electrons per atom.
Reminder: The boundaries of the Jones zone bisect $(220) \times 2 \pi / a$ and symmetry-related reciprocal lattice vectors. To simplify the calculation of the volume, regard it as a cube of side $4 \pi / a$ with pyramids of height $2 \pi / a$ and square bases of side $4 \pi / a$ attached to each face of the cube. The volume of a pyramid is $\frac{1}{3} \times$ basal area $] \times[$ height $]$.
4. For a uniform electron gas with Fermi wave vector k_{F}, show that the radius of an "atomic sphere" containing Z electrons is

$$
r_{0}=(9 \pi Z / 4)^{1 / 3} / k_{F}
$$

Show that the total electrostatic energy of an atomic sphere containing an ion of charge $+Z e$ at its centre is

$$
-\frac{1}{2} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{Z^{2} \alpha}{r_{0}} \quad \text { with } \quad \alpha=\frac{9}{5}=1.8
$$

Method: Work out the energy change in adding a spherical shell of charge with radius r and thickness δr, and integrate to obtain the total energy.
Note that α is very close to the precise value $\alpha=1.79$ for close-packed structures. The Wigner-Seitz unit cells for close-packed structures are electrically neutral and roughly spherical in shape; they interact weakly with each other, leading to the small deviation from $\alpha=1.8$.
5. Near the conduction band minima of silicon, the surfaces of constant energy are ellipsoids of revolution with their long axes directed along the k_{x}, k_{y} and k_{z} axes. For example, near a CB minimum lying at \boldsymbol{k}_{0} on the k_{x} axis,

$$
E(\boldsymbol{k})=\text { const. }+\frac{\hbar^{2}}{2}\left[\frac{\Delta k_{x}^{2}}{m_{l}}+\frac{\Delta k_{y}^{2}+\Delta k_{z}^{2}}{m_{t}}\right]
$$

where $\Delta \boldsymbol{k}=\boldsymbol{k}-\boldsymbol{k}_{0}$ is the "distance" from the minimum.
In a cyclotron resonance experiment on silicon, the applied magnetic field is in the x-direction and the frequency of the applied microwave field is 24 GHz . By considering the shapes of the electron orbits on the k_{x}, k_{y} and k_{z} ellipsoids, explain why only two electron resonance peaks are observed in the experiment. Given that the resonances occur at $B=0.1$ and 0.3 tesla, calculate the transverse and longitudinal effective masses m_{t} and m_{l} for electrons in silicon, expressing your results in terms of the free-electron mass m_{0}. [You can assume that $m_{l}>m_{t}$.]
6. Sketch the shape of cyclotron orbits (in \boldsymbol{k}-space) for electrons at the Fermi energy in
(a) the monovalent metal potassium, regarding the electrons as free, and
(b) a nearly-free electron divalent metal with the simple cubic structure.

In both cases, take the magnetic field to be in the positive z direction. Note that in case (b) there are at least three distinct orbits you can draw.
Given that the number density of electrons in potassium is $1.4 \times 10^{28} \mathrm{~m}^{-3}$, calculate the radius of closed cyclotron orbits in r-space when the magnetic field strength is 0.2 tesla.

