PHYS 30672
 MATHS METHODS

1. Mirages occur where the refractive index of the air $n(z)$ increases with height z above the ground. According to Fermat's principle, the path of light travelling from A to B is the one minimizing the travel time between these points.

(i) Show that for this path,

$$
\frac{d z}{d x}=\sqrt{A^{2} n(z)^{2}-1}
$$

(ii) If $n(z)=n_{0}(1+\alpha z)$, show that

$$
A n(z)=\cosh \left(A n_{0} \alpha\left[x-x_{0}\right]\right)
$$

where x_{0} is a constant.
(iii) For a ray just grazing the surface at $x=0$ show that

$$
1+\alpha z=\cosh (\alpha x)
$$

(iv) Assuming αx is small, show that for an observation point P at height z, the grazing ray appears to come from a point at distance $d=(z / 2 \alpha)^{1 / 2}$.
2. Water (and fish, which may be neglected) are contained in a large glass vessel with vertical sides. Owing to surface tension, the water rises a little near the sides of vessel, forming a meniscus. The problem is to find the height z of the water surface as a function of distance x from the side of the vessel.
The shape of the meniscus $z(x)$ is determined by minimizing the static energy, which is equal to the surface energy, $\sigma \times$ [area], plus the gravitational potential energy. The origin, $z=0$, can be chosen to be the water level far from the side of the vessel; any change to this level will be negligible if the vessel is sufficiently large. Use a first integral of the Euler-Lagrange equations to show that

$$
\frac{1}{2} \rho g z^{2}+\frac{\sigma}{\sqrt{1+p^{2}}}=\text { const. }
$$

where $p=d z / d x$ and ρ is the density of water.
Assuming that the contact angle between water and glass is zero, show that the water creeps a distance $\sqrt{2 \sigma / \rho g}$ up the glass.

If you have plenty of energy and time, obtain a parametric solution for the shape of the meniscus; e.g., in terms of the angle θ that the water surface makes with the horizontal.
3. Using polar coordinates (R, θ, ϕ) on the surface of a sphere of radius R, show that the shortest path $\theta(\phi)$ joining two points on the surface satisfies the equation

$$
\left(\frac{d \theta}{d \phi}\right)^{2}=A \sin ^{4} \theta-\sin ^{2} \theta
$$

where A is constant.
Aside: If you want to solve this, try rewriting it as a differential equation for $\cot \theta$. There is an analytic solution, which of course corresponds to a great circle path round the sphere.
4. In relativistic quantum mechanics, the Lagrangian density for a neutral π meson is given by

$$
\Lambda=\frac{1}{2}\left(\dot{\phi}^{2}-\nabla \phi \cdot \nabla \phi-\mu^{2} \phi^{2}\right),
$$

where μ is the pion mass, $\phi(\boldsymbol{r}, t)$ is a real wavefunction, and units have been chosen such that $c=1$. Assuming Hamilton's principle $\delta S=0$, where the action

$$
S[\phi]=\iint \Lambda d^{3} \boldsymbol{r} d t
$$

find the wave equation satisfied by ϕ.
5. A solid spherical planet of radius R rotates with angular velocity ω, and is covered with a layer of water of depth $h(\theta) \ll R$, where θ is the polar angle. For a small volume of water $d V$ in the layer, at position $y(\theta)$ above the solid surface, $0<y(\theta)<h(\theta)$, the gravitational potential energy is $g \rho y d V$ and the rotational potential energy is $-\rho \omega^{2} R^{2} \sin ^{2} \theta d V / 2$, where ρ is the density of water, g is the acceleration due to gravity and the approximation $y \ll R$ has been used. In the same approximation, the volume $d V$ is $d V=$ $R^{2} \sin \theta d y d \theta d \phi$.
Show that the total potential energy of the water is

$$
E=\pi \rho R^{2} \int_{0}^{\pi}\left(g h^{2}-\omega^{2} R^{2} h \sin ^{2} \theta\right) \sin \theta d \theta
$$

Minimize E subject to the condition of constant volume V and hence derive an expression for the depth of water $h(\theta)$.
This was the second part of an exam question set in June 1999.
6. The Hamiltonian operator for a particle in the region $0<x<\infty$ is

$$
\hat{H}=-\frac{d^{2}}{d x^{2}}+x
$$

where units have been chosen such that $\hbar^{2}=2 m$. The boundary conditions for the wave function are

$$
\psi \rightarrow 0 \text { as } x \rightarrow \infty \text { and } \frac{d \psi}{d x}=0 \text { at } x=0
$$

Choosing the trial function $\psi=(\beta x+1) \exp (-\alpha x)$, where α and β are real constants, determine a value for β such that the boundary conditions are satisfied. Show that for this (real) trial function,

$$
\int_{0}^{\infty} \psi \hat{H} \psi d x=\frac{\alpha}{4}+\frac{9}{8 \alpha^{2}}
$$

Use the Rayleigh-Ritz method to estimate a value for the ground state energy.
You may assume the integral

$$
\int_{0}^{\infty} x^{n} \exp (-s x) d x=\frac{n!}{s^{n+1}}
$$

Aside: You might have been troubled by the unusual boundary condition imposed at $x=0$. If so, you can imagine that the potential is $|x|$ and that we're looking for the ground state wave function, which is an even function of x and hence has zero derivative at $x=0$. We then restrict our attentionrather than the particle - to the region $x>0$.

