PHYS 30672 MATHS METHODS Examples 3

Note: 2, 4, 5(a), 10 and 11 could be attempted over the vacation. 1 and 3(b) require conversion to a differential equation, which is not covered in the first two lectures on integral equations; 7 can also be tackled this way, or by careful use of an integral transform - note that it is not a standard case of a displacement kernel. 3(a) and 8 ask specifically for a Laplace transform solution. 6 and 9 do not require any additional knowledge, but they may be more challenging.

1. Solve the Volterra equation

$$
f(x)=x^{2}+1+\int_{0}^{x} y f(y) d y
$$

by converting it to a first-order ODE. You will have to deduce the initial value $f(0)$ from the integral equation.
Ans: $f(x)=3 e^{x^{2} / 2}-2$
2. Solve the Fredholm equation

$$
f(x)=x+\int_{-\pi}^{\pi} \cos (x-y) f(y) d y
$$

by any method that seems appropriate.
Ans: $f(x)=x-\frac{2 \pi}{\pi-1} \sin x$
3. (a) Solve the Volterra equation

$$
f(x)=x+\int_{0}^{x}(x-y) f(y) d y
$$

by using the Laplace transform method and the convolution theorem.
Ans: $f(x)=\sinh x$
(b) Solve the equation again by converting it to a differential equation, deducing the initial values $f(0)$ and $f^{\prime}(0)$ from the integral equation and its first derivative.
4. Find the eigenvalues and eigenfunctions of the homogeneous Fredholm equation

$$
f(x)=\lambda \int_{0}^{1}(x+y) y f(y) d y
$$

Hints: Use the separable kernel method, or make an educated guess at the form of the solution. If you don't trust yourself not to make an algebraic slip, try using Mathematica: define a suitable $f[x]$ containing arbitrary constants and use the function SolveAlways [$\mathrm{f}[\mathrm{x}]==<\mathrm{RHS}>,\{\mathrm{x}\}]$
Ans: $\lambda=-24 \pm 18 \sqrt{2}, f(x)=\sqrt{2} x \pm 1$ (unnormalized)
5. Solve the Fredholm equation

$$
f(x)=x+\lambda \int_{0}^{1}(x+y) y f(y) d y
$$

by using (a) the separable kernel method and (b) the Hilbert-Schmidt eigenfunction expansion of the resolvent kernel. The parameter λ is not equal to either of the eigenvalues found in Q.4.
Hint for (b): The equation satisfied by $\sqrt{x} f(x)$ has a symmetric kernel, $K(x, y)=\sqrt{x}(x+y) \sqrt{y} ;$ modify your results from Q. 4 appropriately.
6. Consider the integral equation

$$
f(x)=e^{-|x|}+\lambda \int_{0}^{\infty} f(y) \cos (x y) d y
$$

What is the symmetry of the solution? Find $f(x)$ by taking the Fourier transform of each side, making use of the symmetry.
7. Solve the integral equation

$$
f(x)=e^{-|x|}+\lambda \int_{0}^{\infty} e^{-|x-y|} f(y) d y \quad \text { where }-\infty<x<\infty \text { and } \lambda>\frac{1}{2}
$$

Hints: Treat the cases $x>0$ and $x<0$ separately. The case $x<0$ can be solved by inspection. For $x>0$, differentiate the integral equation twice; it is helpful to split the range of integration first.
8. In lectures, we showed that normal projection of a spherically-symmetric density function $\rho(r)$ on to the (x, y) plane leads to a 2D density function

$$
\sigma(R)=2 \int_{R}^{\infty} \frac{r \rho(r)}{\sqrt{r^{2}-R^{2}}} d r
$$

Use the substitutions $x=1 / R^{2}$ and $y=1 / r^{2}$ to rewrite this in the form

$$
g(x)=\int_{0}^{x} \frac{f(y)}{\sqrt{x-y}} d y
$$

which is known as Abel's integral equation. Take the Laplace transform of each side to show that the solution is

$$
f(x)=\frac{1}{\pi} \frac{d}{d x} \int_{0}^{x} \frac{g(y)}{\sqrt{x-y}} d y
$$

Note: You won't need the Bromwich integral to solve this problem, but it is helpful to note that

$$
\int_{0}^{\infty} x^{-1 / 2} e^{-s x} d x=(\pi / s)^{1 / 2}
$$

which you could prove by making the change of variable $x=u^{2}$.
9. The integral equation

$$
\nu(x)=\frac{1}{2} e^{-x}+\frac{1}{2} \int_{0}^{L} e^{-|x-y|} \nu(y) d y \quad \text { for } \quad 0 \leq x \leq L
$$

is a version of the integral equation for molecular flow down a cylindrical tube of length L, in which the transfer probability $p(|x-y|)$ has been approximated by the exponential function. Prove that the solution is a linear function of x.
For a harder problem, show that the solution of

$$
\nu(x)=s(x)+\int_{0}^{L} p(|x-y|) \nu(y) d y, \quad \text { where } \quad s(x)=\int_{x}^{\infty} p(y) d y
$$

is a linear function of x only if p is the exponential function. [You should assume that terms of order $p(L)$ are negligible compared with $p(x)$ for $L \gg x$.] Hence, despite appearances, the numerical solution obtained in MolecularFlow.nb cannot be exactly linear.
10. Schrödinger's equation for a particle bound by an attractive 1D potential $V(x)<0$ can be written in the form

$$
-u^{\prime \prime}(x)+\lambda W(x) u(x)=-\gamma^{2} u(x)
$$

where $\lambda W \equiv 2 m V(x) / \hbar^{2} \rightarrow 0$ for $x \rightarrow \pm \infty$. The constant $\lambda>0$ is a measure of the strength of the potential. By finding the Green's function satisfying

$$
\frac{\partial^{2}}{\partial x^{2}} G(x, y)-\gamma^{2} G(x, y)=\delta(x-y)
$$

with appropriate boundary conditions for $x \rightarrow \pm \infty$, show that

$$
u(x)=\lambda \int_{-\infty}^{\infty} G(x, y) W(y) u(y) d y
$$

where $G(x, y)$ is a function only of $x-y$. This eigenvalue equation for $u(x)$ can be used to find the strengths of potential for which the original Schrödinger equation has a bound state with energy $-\hbar^{2} \gamma^{2} / 2 m$.
(a) By considering $u(0)$, show that the potential $\lambda W=-\lambda \delta(x)$ has a bound state for any $\lambda>0$ and that $\gamma=\lambda / 2$ for this state.
(b) For the potential $\lambda W=-\lambda \delta(x)-\lambda \delta(x-a)$, write down the linear equations satisfied by $u(0)$ and $u(a)$. From these equations, show that there is always at least one bound state if $\lambda>0$ and that there will be a second bound state if $\lambda>2 / a$. Sketch the two bound-state wave functions.
11. Consider the integral equation

$$
f(x)=g(x)+\lambda \int_{-\infty}^{\infty} e^{-|x-y|} f(y) d y \quad \text { for } \quad \lambda<\frac{1}{2}
$$

Assuming that the Fourier transforms of f and g exist, show that they are related by

$$
\tilde{f}(k)=\frac{k^{2}+1}{k^{2}+1-2 \lambda} \tilde{g}(k)
$$

Hence show that the solution $f(x)$ is

$$
f(x)=g(x)+\frac{\lambda}{\gamma} \int_{-\infty}^{\infty} e^{-\gamma|x-y|} g(y) d y, \quad \text { where } \gamma=\sqrt{1-2 \lambda}
$$

Does this solution make sense to you for $|\lambda| \ll 1$?

