PHYS 30672 MATHS METHODS Examples 3

Note: 2, 4, 5(a), 10 and 11 could be attempted over the vacation. 1 and 3(b) require
conversion to a differential equation, which is not covered in the first two lectures on
integral equations; 7 can also be tackled this way, or by careful use of an integral
transform — note that it is not a standard case of a displacement kernel. 3(a) and 8
ask specifically for a Laplace transform solution. 6 and 9 do not require any additional
knowledge, but they may be more challenging.

1. Solve the Volterra equation

f(x) :w2+1+/wyf(y)dy

0

by converting it to a first-order ODE. You will have to deduce the initial value
f(0) from the integral equation.

Ans: f(z) =3¢ /2 -2

2. Solve the Fredholm equation

f@) =+ | " cos(e — y) F(y) dy

—T

by any method that seems appropriate.
2

Ans: f(x) =z — T

T —

sin x
1
3. (a) Solve the Volterra equation

fa)=o+ / " - ) f(y) dy

by using the Laplace transform method and the convolution theorem.
Ans: f(z) =sinhx

(b) Solve the equation again by converting it to a differential equation, de-
ducing the initial values f(0) and f’(0) from the integral equation and
its first derivative.

4. Find the cigenvalues and eigenfunctions of the homogeneous Fredholm equa-
tion

r) = A/0 (x+y)y fy)dy

Hints: Use the separable kernel method, or make an educated guess at the
form of the solution. If you don’t trust yourself not to make an algebraic slip,
try using Mathematica: define a suitable f [x] containing arbitrary constants
and use the function SolveAlways [f [x]==<RHS>, {x}]

Ans: A\ = —24+18v/2, f(x) = /22 4+ 1 (unnormalized)

9. Solve the Fredholm equation

f(x) :xﬂ/o (x+ 9y f(y) dy

by using (a) the separable kernel method and (b) the Hilbert—Schmidt eigen-
function expansion of the resolvent kernel. The parameter A is not equal to
either of the eigenvalues found in Q.4.

Hint for (b): The equation satisfied by /xf(z) has a symmetric kernel,
K(z,y) = Vx(z + y)y/y; modify your results from Q.4 appropriately.

. Consider the integral equation

flz) = el 4 A / " f(y) cos(ay) dy.

What is the symmetry of the solution? Find f(x) by taking the Fourier
transform of each side, making use of the symmetry.

. Solve the integral equation

f(x) —elx|—|—/\/ “le=vl £ () dy where —oo < 2 < 00 and A > 1.

Hints: Treat the cases x > 0 and = < 0 separately. The case x < 0 can be
solved by inspection. For x > 0, differentiate the integral equation twice; it
is helpful to split the range of integration first.

. In lectures, we showed that normal projection of a spherically-symmetric den-

sity function p(r) on to the (z,y) plane leads to a 2D density function

oo
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Use the substitutions z = 1/R? and y = 1/r? to rewrite this in the form

o(R) =2

dy,
Vi
which is known as Abel’s integral equation. Take the Laplace transform of
each side to show that the solution is

f(x):li “ gy)

mdr Jo VT —y

dy .

Note: You won’t need the Bromwich integral to solve this problem, but it is
helpful to note that

/ x2e 5y = (w/s)1/2,
0
2

which you could prove by making the change of variable z = u~.



9.

10.

The integral equation
L
viz)=4e "+ %/ e 17Vl u(y) dy for 0<z<L
0

is a version of the integral equation for molecular flow down a cylindrical tube
of length L, in which the transfer probability p(|z—y|) has been approximated
by the exponential function. Prove that the solution is a linear function of x.

For a harder problem, show that the solution of

u@»=su»+A p(le — yl) vy) dy, where suw=/wmwd%

is a linear function of x only if p is the exponential function. [You should
assume that terms of order p(L) are negligible compared with p(z) for
L > x.] Hence, despite appearances, the numerical solution obtained in
MolecularFlow.nb cannot be exactly linear.

Schrédinger’s equation for a particle bound by an attractive 1D potential
V(x) < 0 can be written in the form

—u" (@) + AW (2)u(z) = —7*u(z),

where AW = 2mV (z)/h? — 0 for x — +o0o. The constant A > 0 is a measure
of the strength of the potential. By finding the Green’s function satisfying

32
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y) =0(r —y)

with appropriate boundary conditions for z — +o00, show that

mm:A/mGuwwwwmw@,

—0o0

where G(z,y) is a function only of x —y. This eigenvalue equation for u(z) can
be used to find the strengths of potential for which the original Schrodinger
equation has a bound state with energy —h%y2/2m.

(a) By considering u(0), show that the potential AW = —Ad(x) has a bound
state for any A > 0 and that v = A/2 for this state.

(b) For the potential AW = —Ad(z) — Ad(xz — a), write down the linear
equations satisfied by u(0) and u(a). From these equations, show that
there is always at least one bound state if A > 0 and that there will
be a second bound state if A > 2/a. Sketch the two bound-state wave
functions.

11. Consider the integral equation

“levlf(y)dy for A< L.

f(x) +A/

Assuming that the Fourier transforms of f and g exist, show that they are
related by

z 1
f(k) = K2+ 11—\ g(k).
Hence show that the solution f(z) is

f(z) =g(x) + A /00 efv‘g”*ylg(y) dy, where y=+v1-2\.

Does this solution make sense to you for || < 17



