
PHYS 30672 MATHS METHODS Examples 3

Note: 2, 4, 5(a), 10 and 11 could be attempted over the vacation. 1 and 3(b) require
conversion to a differential equation, which is not covered in the first two lectures on
integral equations; 7 can also be tackled this way, or by careful use of an integral
transform — note that it is not a standard case of a displacement kernel. 3(a) and 8
ask specifically for a Laplace transform solution. 6 and 9 do not require any additional
knowledge, but they may be more challenging.

1. Solve the Volterra equation

f(x) = x2 + 1 +
∫ x

0

yf(y) dy

by converting it to a first-order ODE. You will have to deduce the initial value
f(0) from the integral equation.

Ans: f(x) = 3 ex
2/2 − 2

2. Solve the Fredholm equation

f(x) = x+
∫ π

−π
cos(x− y) f(y) dy

by any method that seems appropriate.

Ans: f(x) = x− 2π
π − 1

sinx

3. (a) Solve the Volterra equation

f(x) = x+
∫ x

0

(x− y)f(y) dy

by using the Laplace transform method and the convolution theorem.
Ans: f(x) = sinhx

(b) Solve the equation again by converting it to a differential equation, de-
ducing the initial values f(0) and f ′(0) from the integral equation and
its first derivative.

4. Find the eigenvalues and eigenfunctions of the homogeneous Fredholm equa-
tion

f(x) = λ

∫ 1

0

(x+ y)y f(y) dy .

Hints: Use the separable kernel method, or make an educated guess at the
form of the solution. If you don’t trust yourself not to make an algebraic slip,
try using Mathematica: define a suitable f[x] containing arbitrary constants
and use the function SolveAlways[f[x]==<RHS>,{x}]
Ans: λ = −24± 18

√
2 , f(x) =

√
2x± 1 (unnormalized)

5. Solve the Fredholm equation

f(x) = x+ λ

∫ 1

0

(x+ y)y f(y) dy

by using (a) the separable kernel method and (b) the Hilbert–Schmidt eigen-
function expansion of the resolvent kernel. The parameter λ is not equal to
either of the eigenvalues found in Q.4.

Hint for (b): The equation satisfied by
√
xf(x) has a symmetric kernel,

K(x, y) =
√
x(x+ y)

√
y ; modify your results from Q.4 appropriately.

6. Consider the integral equation

f(x) = e−|x| + λ

∫ ∞
0

f(y) cos(xy) dy .

What is the symmetry of the solution? Find f(x) by taking the Fourier
transform of each side, making use of the symmetry.

7. Solve the integral equation

f(x) = e−|x| + λ

∫ ∞
0

e−|x−y|f(y) dy where −∞ < x <∞ and λ > 1
2 .

Hints: Treat the cases x > 0 and x < 0 separately. The case x < 0 can be
solved by inspection. For x > 0, differentiate the integral equation twice; it
is helpful to split the range of integration first.

8. In lectures, we showed that normal projection of a spherically-symmetric den-
sity function ρ(r) on to the (x, y) plane leads to a 2D density function

σ(R) = 2
∫ ∞
R

r ρ(r)√
r2 −R2

dr .

Use the substitutions x = 1/R2 and y = 1/r2 to rewrite this in the form

g(x) =
∫ x

0

f(y)√
x− y

dy ,

which is known as Abel’s integral equation. Take the Laplace transform of
each side to show that the solution is

f(x) =
1
π

d

dx

∫ x

0

g(y)√
x− y

dy .

Note: You won’t need the Bromwich integral to solve this problem, but it is
helpful to note that∫ ∞

0

x−1/2e−sxdx = (π/s)1/2 ,

which you could prove by making the change of variable x = u2.



9. The integral equation

ν(x) = 1
2 e
−x + 1

2

∫ L

0

e−|x−y| ν(y) dy for 0 ≤ x ≤ L

is a version of the integral equation for molecular flow down a cylindrical tube
of length L, in which the transfer probability p(|x−y|) has been approximated
by the exponential function. Prove that the solution is a linear function of x.

For a harder problem, show that the solution of

ν(x) = s(x) +
∫ L

0

p(|x− y|) ν(y) dy , where s(x) =
∫ ∞
x

p(y) dy ,

is a linear function of x only if p is the exponential function. [You should
assume that terms of order p(L) are negligible compared with p(x) for
L � x.] Hence, despite appearances, the numerical solution obtained in
MolecularFlow.nb cannot be exactly linear.

10. Schrödinger’s equation for a particle bound by an attractive 1D potential
V (x) < 0 can be written in the form

−u′′(x) + λW (x)u(x) = −γ2u(x) ,

where λW ≡ 2mV (x)/~2 → 0 for x→ ±∞. The constant λ > 0 is a measure
of the strength of the potential. By finding the Green’s function satisfying

∂2

∂x2
G(x, y)− γ2G(x, y) = δ(x− y)

with appropriate boundary conditions for x→ ±∞, show that

u(x) = λ

∫ ∞
−∞

G(x, y)W (y)u(y) dy ,

where G(x, y) is a function only of x−y. This eigenvalue equation for u(x) can
be used to find the strengths of potential for which the original Schrödinger
equation has a bound state with energy −~2γ2/2m.

(a) By considering u(0), show that the potential λW = −λδ(x) has a bound
state for any λ > 0 and that γ = λ/2 for this state.

(b) For the potential λW = −λδ(x) − λδ(x − a), write down the linear
equations satisfied by u(0) and u(a). From these equations, show that
there is always at least one bound state if λ > 0 and that there will
be a second bound state if λ > 2/a. Sketch the two bound-state wave
functions.

11. Consider the integral equation

f(x) = g(x) + λ

∫ ∞
−∞

e−|x−y|f(y) dy for λ < 1
2 .

Assuming that the Fourier transforms of f and g exist, show that they are
related by

f̃(k) =
k2 + 1

k2 + 1− 2λ
g̃(k) .

Hence show that the solution f(x) is

f(x) = g(x) +
λ

γ

∫ ∞
−∞

e−γ|x−y|g(y) dy , where γ =
√

1− 2λ .

Does this solution make sense to you for |λ| � 1?


