PHYS 30672 MATHS METHODS Examples 3

Note: 2, 4, 5(a), 10 and 11 could be attempted over the vacation. 1 and 3(b) require conversion to a differential equation, which is not covered in the first two lectures on integral equations; 7 can also be tackled this way, or by careful use of an integral transform — note that it is *not* a standard case of a displacement kernel. 3(a) and 8 ask specifically for a Laplace transform solution. 6 and 9 do not require any additional knowledge, but they may be more challenging.

1. Solve the Volterra equation

$$f(x) = x^2 + 1 + \int_0^x y f(y) \, dy$$

by converting it to a first-order ODE. You will have to deduce the initial value f(0) from the integral equation.

Ans: $f(x) = 3e^{x^2/2} - 2$

2. Solve the Fredholm equation

$$f(x) = x + \int_{-\pi}^{\pi} \cos(x - y) f(y) \, dy$$

by any method that seems appropriate.

Ans:
$$f(x) = x - \frac{2\pi}{\pi - 1} \sin x$$

3. (a) Solve the Volterra equation

$$f(x) = x + \int_0^x (x - y)f(y) \, dy$$

by using the Laplace transform method and the convolution theorem. Ans: $f(x) = \sinh x$

- (b) Solve the equation again by converting it to a differential equation, deducing the initial values f(0) and f'(0) from the integral equation and its first derivative.
- 4. Find the eigenvalues and eigenfunctions of the homogeneous Fredholm equation

$$f(x) = \lambda \int_0^1 (x+y)y f(y) \, dy \, .$$

Hints: Use the separable kernel method, or make an educated guess at the form of the solution. If you don't trust yourself not to make an algebraic slip, try using Mathematica: define a suitable f[x] containing arbitrary constants and use the function SolveAlways[f[x]==<RHS>, {x}]

Ans:
$$\lambda = -24 \pm 18\sqrt{2}$$
, $f(x) = \sqrt{2} x \pm 1$ (unnormalized)

5. Solve the Fredholm equation

$$f(x) = x + \lambda \int_0^1 (x+y)y f(y) \, dy$$

by using (a) the separable kernel method and (b) the Hilbert–Schmidt eigenfunction expansion of the resolvent kernel. The parameter λ is not equal to either of the eigenvalues found in Q.4.

Hint for (b): The equation satisfied by $\sqrt{x}f(x)$ has a symmetric kernel, $K(x,y) = \sqrt{x}(x+y)\sqrt{y}$; modify your results from Q.4 appropriately.

6. Consider the integral equation

$$f(x) = e^{-|x|} + \lambda \int_0^\infty f(y) \, \cos(xy) \, dy \, .$$

What is the symmetry of the solution? Find f(x) by taking the Fourier transform of each side, making use of the symmetry.

7. Solve the integral equation

$$f(x) = e^{-|x|} + \lambda \int_0^\infty e^{-|x-y|} f(y) \, dy \quad \text{where } -\infty < x < \infty \text{ and } \lambda > \frac{1}{2}.$$

Hints: Treat the cases x > 0 and x < 0 separately. The case x < 0 can be solved by inspection. For x > 0, differentiate the integral equation twice; it is helpful to split the range of integration first.

8. In lectures, we showed that normal projection of a spherically-symmetric density function $\rho(r)$ on to the (x, y) plane leads to a 2D density function

$$\sigma(R) = 2 \int_R^\infty \frac{r\,\rho(r)}{\sqrt{r^2 - R^2}}\,dr\,.$$

Use the substitutions $x = 1/R^2$ and $y = 1/r^2$ to rewrite this in the form

$$g(x) = \int_0^x \frac{f(y)}{\sqrt{x-y}} \, dy$$

which is known as *Abel's integral equation*. Take the Laplace transform of each side to show that the solution is

$$f(x) = \frac{1}{\pi} \frac{d}{dx} \int_0^x \frac{g(y)}{\sqrt{x-y}} \, dy \, .$$

Note: You won't need the Bromwich integral to solve this problem, but it is helpful to note that

$$\int_0^\infty x^{-1/2} e^{-sx} dx = (\pi/s)^{1/2} dx$$

which you could prove by making the change of variable $x = u^2$.

9. The integral equation

$$\nu(x) = \frac{1}{2}e^{-x} + \frac{1}{2}\int_0^L e^{-|x-y|}\nu(y)\,dy \quad \text{for} \quad 0 \le x \le L$$

is a version of the integral equation for molecular flow down a cylindrical tube of length L, in which the transfer probability p(|x-y|) has been approximated by the exponential function. Prove that the solution is a linear function of x.

For a harder problem, show that the solution of

$$\nu(x) = s(x) + \int_0^L p(|x-y|)\,\nu(y)\,dy, \quad \text{where} \quad s(x) = \int_x^\infty p(y)\,dy,$$

is a linear function of x only if p is the exponential function. [You should assume that terms of order p(L) are negligible compared with p(x) for $L \gg x$.] Hence, despite appearances, the numerical solution obtained in MolecularFlow.nb cannot be exactly linear.

10. Schrödinger's equation for a particle bound by an attractive 1D potential V(x) < 0 can be written in the form

$$-u''(x) + \lambda W(x)u(x) = -\gamma^2 u(x),$$

where $\lambda W \equiv 2mV(x)/\hbar^2 \to 0$ for $x \to \pm \infty$. The constant $\lambda > 0$ is a measure of the strength of the potential. By finding the Green's function satisfying

$$\frac{\partial^2}{\partial x^2}G(x,y) - \gamma^2 G(x,y) = \delta(x-y)$$

with appropriate boundary conditions for $x \to \pm \infty$, show that

$$u(x) = \lambda \int_{-\infty}^{\infty} G(x,y) \, W(y) \, u(y) \, dy \,,$$

where G(x, y) is a function only of x - y. This eigenvalue equation for u(x) can be used to find the strengths of potential for which the original Schrödinger equation has a bound state with energy $-\hbar^2 \gamma^2/2m$.

- (a) By considering u(0), show that the potential $\lambda W = -\lambda \delta(x)$ has a bound state for any $\lambda > 0$ and that $\gamma = \lambda/2$ for this state.
- (b) For the potential $\lambda W = -\lambda \delta(x) \lambda \delta(x a)$, write down the linear equations satisfied by u(0) and u(a). From these equations, show that there is always at least one bound state if $\lambda > 0$ and that there will be a second bound state if $\lambda > 2/a$. Sketch the two bound-state wave functions.

11. Consider the integral equation

$$f(x) = g(x) + \lambda \int_{-\infty}^{\infty} e^{-|x-y|} f(y) \, dy$$
 for $\lambda < \frac{1}{2}$

Assuming that the Fourier transforms of f and g exist, show that they are related by

$$\tilde{f}(k) = \frac{k^2 + 1}{k^2 + 1 - 2\lambda} \, \tilde{g}(k)$$

Hence show that the solution f(x) is

$$f(x) = g(x) + \frac{\lambda}{\gamma} \int_{-\infty}^{\infty} e^{-\gamma |x-y|} g(y) \, dy$$
, where $\gamma = \sqrt{1 - 2\lambda}$.

Does this solution make sense to you for $|\lambda| \ll 1$?