ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Vector Spaces for Quantum Mechanics

6 June 2012, 14:00 - 15:30

Answer $\underline{\mathbf{ALL}}$ parts of question 1 and $\underline{\mathbf{TWO}}$ other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

1 of 5 P.T.O

1. a) For each of the following matrices, state whether it is Hermitian, unitary, both, or neither:

(i)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
; (ii) $\begin{pmatrix} 2 & 1-i \\ 1+i & 0 \end{pmatrix}$; (iii) $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$; (iv) $\begin{pmatrix} 1 & 1 \\ 1 & i \end{pmatrix}$. [6 marks]

- b) i) The space spanned by the eigenvectors of angular momentum for an electron (s=1/2) with orbital angular momentum l=2 has ten dimensions and can be written either as $V_a^6 \oplus V_b^4$ or as $V_c^5 \otimes V_d^2$. Which angular momenta are associated with each of the vector spaces V_a^6 , V_b^4 , V_c^5 and V_d^2 ?
 - ii) Give the number of dimensions required for the vector space of the wave functions of a free particle moving in three dimensions.

[6 marks]

- c) A quantum system is in a definite state $|\psi\rangle$. If the energy is measured there is a one-half probability of finding it in state $|E_1\rangle$ with $E_1=1.0$ eV, a one-third probability of finding it in $|E_2\rangle$ with $E_2=1.5$ eV, and if neither of those it will be found in $|E_3\rangle$ with $E_3=6$ eV.
 - (i) What is the expectation value of the energy, $\langle E \rangle$?
 - (ii) Write down a possible expression for $|\psi\rangle$ in terms of $|E_1\rangle$, $|E_2\rangle$, and $|E_3\rangle$, consistent with the information given.
 - (iii) Say in a few words why $|\psi\rangle$ is not uniquely determined in terms of the $|E_i\rangle$ by the given information.

[7 marks]

d) Write down the notation for (i) an inner product, (ii) an outer product, and (iii) a direct product, of two vectors, using the Dirac notation. In each case state whether the relevant product is a bra, a ket, an operator, or a scalar complex number.

2 of 5

[6 marks]

P.T.O

2. The matrix representation of \hat{J}_x , for a particle with j=3/2, in the J_z basis is

$$J_{x} \xrightarrow{J_{x}} \hbar \begin{pmatrix} 0 & \sqrt{3}/2 & 0 & 0\\ \sqrt{3}/2 & 0 & 1 & 0\\ 0 & 1 & 0 & \sqrt{3}/2\\ 0 & 0 & \sqrt{3}/2 & 0 \end{pmatrix}$$

In this question, work in the J_z basis throughout.

a) Write down the matrix representation for \hat{J}_z for a j=3/2 particle.

[4 marks]

b) Use the angular momentum commutation relations to find the \hat{J}_y matrix for this system.

[7 marks]

c) Write down the eigenvalues of \hat{J}_x for j=3/2. There is no need to solve the eigenvalue equation for the matrix.

[4 marks]

d) Find the normalised eigenvectors of \hat{J}_x for any two eigenvalues, and show that the vectors are orthogonal.

[10 marks]

3 of 5 P.T.O

3. a) Briefly describe the concept of entanglement in quantum mechanics.

[6 marks]

b) Briefly describe two proposed technological applications of entanglement.

[4 marks]

c) The following state vectors describe the joint spin state of a two-particle system. In the formulae, $|\uparrow\rangle$ and $|\downarrow\rangle$ represent spin up and down along the z direction, and $|\leftarrow\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$ corresponds to positive spin in the x direction:

$$|A\rangle = |\uparrow\rangle|\downarrow\rangle$$

$$|B\rangle = \frac{|\uparrow\rangle|\downarrow\rangle - |\uparrow\rangle|\uparrow\rangle}{\sqrt{2}}$$

$$|C\rangle = \frac{7}{25}|\uparrow\rangle|\uparrow\rangle + \frac{24}{25}|\downarrow\rangle|\downarrow\rangle$$

$$|D\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle|\leftarrow\rangle + |\leftarrow\rangle|\downarrow\rangle) - \frac{1}{2}(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle)$$

In which, if any, of these states are the spins entangled?

[6 marks]

d) The Hamiltonian for two non-interacting particles can be written $\hat{H}_1 \otimes \hat{I} + \hat{I} \otimes \hat{H}_2$, where \hat{H}_1 acts only on the first particle and \hat{H}_2 only on the second. Show that the time evolution operator can be written $\hat{U}_1 \otimes \hat{U}_2$, where \hat{U}_1 and \hat{U}_2 apply to the first and second particles respectively; you may assume that $\hat{U}(t) = \exp[-i\hat{H}t/\hbar]$ and is unitary.

[5 marks]

e) The state of a two-particle system, as in part (d), at t = 0 is

$$|\Psi(0)\rangle = \frac{1}{\sqrt{2}} (|a\rangle|c\rangle + |b\rangle|d\rangle),$$

where the component states $|a\rangle$, $|b\rangle$ are for particle 1 and $|c\rangle$, $|d\rangle$ for particle 2 (not necessarily energy eigenstates). Write down the expression for the state at time t, $|\Psi(t)\rangle$, using the notation $U_1(t)|a\rangle = |U_1a\rangle$ etc. Hence show that, if $|a\rangle$ and $|b\rangle$ are orthogonal, as are $|c\rangle$ and $|d\rangle$, it is impossible for $|\Psi(0)\rangle$ to evolve according to the Schrödinger equation into a separable state.

[4 marks]

4 of 5 P.T.O

4. a) A particle moving in one dimension has a wavepacket given by:

$$\langle x|\Psi\rangle\propto\exp\left[-ax^2+\frac{ip_0x}{\hbar}\right]$$

(i) What is the probability distribution for the particle position, x? By inspection or otherwise, write down the mean position, $\langle x \rangle$, and its uncertainty, Δx .

[6 marks]

(ii) Momentum eigenstates are represented in the x-basis as

$$\langle x|p=p'\rangle \propto \exp[ip'x/\hbar]$$

Use this fact to work out the momentum representation of the state, $\langle p|\Psi\rangle$. By inspection, identify the expection value of the momentum, $\langle p\rangle$. Hint: find and apply the unitary transformation between x and p bases. Do not worry about normalization.

[13 marks]

Note: A Gaussian of the form $N \exp[-x^2/2\sigma^2]$ has standard deviation σ .

b) (i) Using the fact that $\hat{p} = -i\hbar \partial/\partial x$ in the wave function representation, show that $[\hat{x}, \hat{p}] = i\hbar$.

[2 marks]

(ii) The destruction operator for a quantum harmonic oscillator is given by

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$

Write down \hat{a}^{\dagger} and show that $[\hat{a}, \hat{a}^{\dagger}] = 1$.

[4 marks]

END OF EXAMINATION PAPER

PHYSICAL CONSTANTS AND CONVERSION FACTORS

SYMBO	DL DESCRIPTION	NUMERICAL VALUE
C	Velocity of light in vacuum	$299792458 \mathrm{m \ s^{-1}}$, exactly
$\int \bar{\mu}_0$	Permeability of vacuum	$4\pi \times 10^{-7} \text{ N A}^{-2}$, exactly
ϵ_0	Permittivity of vacuum where $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	$8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
h	Planck constant	$6.626 \times 10^{-34} \text{ J s}$
危	$h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
G	Gravitational constant	$6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
e	Elementary charge	1.602 × 10 ⁻¹⁹ C
eV	Electronvolt	$1.602 \times 10^{-19} \text{ J}$
a	Fine-structure constant, $\frac{e^2}{4\pi\epsilon_0\hbar c}$	1 137.0
1772 _e	Electron mass	9.109×10^{-31} kg
$m_{\epsilon}c^2$	Election rest-mass energy	0.511 MeV
$\mu_{\mathcal{B}}$	Bohr magneton, $\frac{e\hbar}{2m_e}$	$9.274 \times 10^{-24} \text{ J T}^{-1}$
R_{∞}	Rydberg energy $\frac{\alpha^2 m_e c^2}{2}$	13.61 eV
a_0	Bohr radius $\frac{1}{G}\frac{\hbar}{m_e G}$	$0.5292 \times 10^{-10} \text{ m}$
Å	Angsirom	$10^{-10} \mathrm{m}$
$m_{\mathfrak{p}}$	Proton mass	$1.673 \times 10^{-27} \text{ kg}$
$m_p c^2$	Proton rest-mass energy	938 272 MeV
$m_n c^2$	Neutron rest-mass energy	939 565 MeV
μ_N	Nuclear magneton, $\frac{e\hbar}{2m_n}$	$5.051 \times 10^{-27} \text{ J T}^{-1}$
fin	Femtometre or fermi	$10^{-15} \mathrm{m}$
Ъ	Barn	10^{-26}m^2
บ	Atomic mass unit, $\frac{1}{12}m(^{12}\text{C atom})$	$1.661 \times 10^{-27} \text{ kg}$
$N_{\mathcal{A}}$	Avogadro constant, atoms m gram mol	$6.022 \times 10^{23} \text{ mol}^{-1}$
$\overline{T_t}$	Triple-point temperature	273.16 K, exactly
k	Boltzmann constant	$1.381 \times 10^{-23} \text{ J K}^{-1}$
R	Molar gas constant, $N_A k$	$8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
σ	Stefan-Boltzmann constant, $\frac{\pi^2}{60} \frac{k^4}{\hbar^3 c^2}$	$5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
M_E	Mass of Earth	$5.97 \times 10^{24} \text{ kg}$
R_E	Mean radius of Earth	$6.4 \times 10^6 \mathrm{\ m}$
9	Standard acceleration of gravity	9.806 65 m s ^{-2} , exactly
atm	Standard atmosphere	101 325 Pa, exactly
M_{\odot}	Solar mass	1.989 × 10 ³⁰ kg
R_{\odot}	Solar radius	$6.96 \times 10^8 \text{ m}$
L_{\odot}	Solar luminosity	$3.84 \times 10^{26} \text{ W}$
T_{Θ}	Solar effective temperature	$5.8 \times 10^3 \text{ K}$
AU	Astronomical unit, mean Earth-Sun distance	$1.496 \times 10^{11} \text{ m}$
рс	Parsec	$3.086 \times 10^{16} \text{ m}$
	Year	$3.156 \times 10^7 \text{ s}$