Random Processes: Examples 3

Key: Easy; Moderate; Difficult; Optional

1. [EM] In Lecture 10 we considered a generalization of the exponential probability distribution to problems where the hazard rate, $\alpha(t)$, was not constant. We found that the survival probability was given by

$$
P(t)=e^{-\int_{0}^{t} \alpha\left(t^{\prime}\right) \mathrm{d} t^{\prime}}
$$

Verify that the corresponding probability density function $f(t)$ has the right properties to be a p.d.f., namely,

$$
f(t) \geq 0 \quad \text { and } \quad \int_{0}^{\infty} f(t) \mathrm{d} t=1
$$

provided that $\alpha(t) \geq 0$ for all $t \geq 0$ and that

$$
\int_{0}^{t} \alpha\left(t^{\prime}\right) \mathrm{d} t^{\prime} \rightarrow \infty \quad \text { for } \quad t \rightarrow \infty
$$

Note that if the last condition is not satified, $P(t)$ is not necessarily incorrect: it just means that there is a non-zero probability of survival to indefinitely long times.
2. [EM] In a simplified model for the lung cancer hazard rate among smokers, the function $\alpha(t)$ in Q. 1 may be approximated by $\alpha(t)=0$ for $t<40$ years, and $\alpha(t)=\epsilon(t-40)$ for $t \geq 40$ years, where $\epsilon=2.5 \times 10^{-3} \mathrm{yr}^{-2}$. By following the method discussed in Lecture 10, show that a smoker is most likely to get cancer at the age of 60 . [You should ignore all other hazards for the purposes of this problem.]
3. [EM] Microwave photons from a ground-based maser [a microwave laser] travel vertically upwards through the Earth's atmosphere. The probability that a photon is absorbed at a height between z and $z+\Delta z$ above the ground (assuming that it has got to height z) is $K(z) \Delta z$. The function $K(z)$ is proportional to the density of the atmosphere, and may be approximated by

$$
K(z)=0.25 e^{-z / 8}
$$

where z is measured in km . Find an expression for the probability that the photon survives to height z without absorption. Hence show that a photon has a 13.5% chance of escaping from the Earth's atmosphere without being absorbed.
4. [E] The Leonid meteor shower of 2004 was unusually heavy during the night of November 18/19, with an average of 30 meteors seen per hour during the period of peak activity. What was the expected number of meteors seen during a ten-minute period of observation? Calculate the probability of observing (a) no meteors and (b) five meteors in a given ten-minute period.
5. [E] A feeble radioactive source emits 3.2 alpha particles per second on average. Calculate the probability that no more than two alpha particles are emitted in a one-second interval.
6. [E] The number of electrons emitted in time t from a heated metal filament follows a Poisson distribution with mean rt. Show that the mean and standard deviation of the electric current during an interval of time t can be expressed as

$$
\bar{I}=e r \quad \text { and } \quad \sigma_{I}=(e \bar{I} / t)^{1 / 2}
$$

7. [M] Let \bar{b} be the average number of births per day in the maternity ward of a hospital. Show that the average number of births on days when there is at least one birth is $\bar{b} /(1-\exp [-\bar{b}])$. [Start by working out the conditional probability that there are b births, given that there is at least one birth.] Show that this average is approximately 1 for the limiting case $\bar{b} \ll 1$, and \bar{b} for the limiting case $\bar{b} \gg 1$. Give a qualitative explanation of the results in these limiting cases.
[You may wish to use the expansion $e^{x} \simeq 1+x$, valid for $x \ll 1$.]
8. [MD] The Pleiades star cluster is a conspicuous grouping of stars, six of which are easily visible to the naked eye. The cluster covers about 0.25 square degrees of the sky, by which is meant a region with angular dimensions such as $0.5^{\circ} \times 0.5^{\circ}$. There are approximately 1500 stars at least as bright as the Pleiades. Assuming that these are randomly distributed over the entire sky [an area of about 41,000 square degrees], calculate the probability that a given region of 0.25 square degrees contains exactly six stars. Hence estimate the probability that at least one such cluster would appear somewhere in the sky. In the light of your last result, do you believe that the Pleiades star cluster is likely to have arisen by chance?
