PC4902: Elements of QMBT, Pt 2

Problems 5
Key: Easy; Moderate; Difficult; Optional

1. $[\mathrm{EM}]$ For a one-dimensional Heisenberg antiferromagnet of (an even number) N spins with $S \gg 1$, the Hamiltonian may be approximated by the quadratic expression

$$
\hat{H}=J S \sum_{j}\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}^{\dagger}+\hat{a}_{j} \hat{a}_{j+1}+2 \hat{a}_{j}^{\dagger} \hat{a}_{j}\right)-N J S^{2},
$$

where $\left\{\hat{a}_{j}^{\dagger}, \hat{a}_{j}\right\}$ are the Holstein-Primakoff Bose operators and the sum includes the sites of both sub-lattices. In the lecture we considered a Bose operator that creates a running wave; in one dimension this would be

$$
\hat{b}_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{j} e^{i k j a} \hat{a}_{j}^{\dagger},
$$

where a is the lattice spacing and $k=2 \pi \times[$ integer $] / N a$ is the wave vector appropriate to periodic boundary conditions. Show that in terms of these new operators, the Hamiltonian can be written as

$$
\hat{H}=J S \sum_{k}\left(\cos k a\left\{\hat{b}_{k}^{\dagger} \hat{b}_{-k}^{\dagger}+\hat{b}_{k} \hat{b}_{-k}\right\}+2 \hat{b}_{k}^{\dagger} \hat{b}_{k}\right)-N J S^{2} .
$$

Use this form for the Hamiltonian to obtain the commutators of \hat{H} with \hat{b}_{k}^{\dagger} and \hat{b}_{-k} :

$$
\begin{aligned}
{\left[\hat{H}, \hat{b}_{k}^{\dagger}\right] } & =2 J S\left(\hat{b}_{k}^{\dagger}+\cos k a \hat{b}_{-k}\right) \\
{\left[\hat{H}, \hat{b}_{-k}\right] } & =-2 J S\left(\hat{b}_{-k}+\cos k a \hat{b}_{k}^{\dagger}\right) .
\end{aligned}
$$

Make the Bogoliubov transformation $\hat{\beta}_{k}^{\dagger}=u_{k} \hat{b}_{k}^{\dagger}+v_{k} \hat{b}_{-k}$ to help solve the equation of motion for the excitation creation operator $\hat{\beta}_{k}^{\dagger}$, and so obtain the excitation spectrum

$$
\epsilon_{k}=2 J S|\sin k a| .
$$

[OD] If you have plenty of time, solve for the coefficients u_{k} and v_{k} that appear in the Bogoliubov transformation, and hence show that

$$
\hat{H}=\sum_{k} \epsilon_{k}\left\{\hat{\beta}_{k}^{\dagger} \hat{\beta}_{k}+\frac{1}{2}\right\}-N J S(S+1)
$$

You can then integrate the zero-point energy of the magnons to obtain the spin-wave approximation to the ground state energy

$$
E_{0}=-N J S\left(S+1-\frac{2}{\pi}\right) .
$$

Even for $S=\frac{1}{2}$ (the worst possible case) this is quite a good approximation to the exact result, $E_{0}=-N J\left(\ln 2-\frac{1}{4}\right)$. The agreement may well be fortuitous here: to find out, we would need to analyse higher-order terms in the expansion in powers of $1 / S$.
2. [EM] Show to your own satisfaction that the Jordan-Wigner transformation from spin- $\frac{1}{2}$ operators to fermions,

$$
\hat{S}_{j}^{z} \rightarrow \hat{c}_{j}^{\dagger} \hat{c}_{j}-\frac{1}{2}, \quad \hat{S}_{j}^{+} \rightarrow \hat{c}_{j}^{\dagger} e^{i \pi \hat{\Sigma}_{j}}, \quad \hat{S}_{j}^{-} \rightarrow \hat{c}_{j} e^{i \pi \hat{\Sigma}_{j}}
$$

where

$$
\hat{\Sigma}_{j}=\sum_{i<j} \hat{c}_{i}^{\dagger} \hat{c}_{i},
$$

correctly reproduces the commutation relations of the spin components. Note that we have written $e^{i \pi}$ instead of the (-1) used in lectures.
In a one-dimensional chain of N spins $S=\frac{1}{2}$ with anisotropic interactions, the Hamiltonian operator takes the form

$$
\hat{H}=\sum_{j}\left\{J_{X} \hat{S}_{j}^{x} \hat{S}_{j+1}^{x}+J_{Y} \hat{S}_{j}^{y} \hat{S}_{j+1}^{y}\right\},
$$

where J_{X} and J_{Y} are constants. Use the Jordan-Wigner transformation to show that the Hamiltonian may be re-written as

$$
\begin{equation*}
\hat{H}=\sum_{j}\left\{-t\left(\hat{c}_{j}^{\dagger} \hat{c}_{j+1}+\hat{c}_{j+1}^{\dagger} \hat{c}_{j}\right)+\Delta\left(\hat{c}_{j}^{\dagger} \hat{c}_{j+1}^{\dagger}+\hat{c}_{j+1} \hat{c}_{j}\right)\right\}, \tag{1}
\end{equation*}
$$

where $t=-\frac{1}{4}\left(J_{X}+J_{Y}\right)$ and $\Delta=\frac{1}{4}\left(J_{X}-J_{Y}\right)$; it will save some work if you express the Hamiltonian in terms of \hat{S}_{j}^{+}and \hat{S}_{j}^{-}before making the transformation to fermions.
[OD] The fermion excitation spectrum can be found by the equation-of-motion method. The Hamiltonian (1) is similar in structure to the lowest-order Bose approximation to the antiferromagnetic Heisenberg Hamiltonian, which suggests a similar method of solution. We define a creation operator for a running wave,

$$
\hat{d}_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{j} e^{i k j a} \hat{c}_{j}^{\dagger},
$$

and evaluate the commutators of \hat{d}_{k}^{\dagger} and \hat{d}_{-k} with \hat{H}. The equation of motion for an excitation can be solved using Bogoliubov combinations of the form

$$
\binom{\hat{f}_{k}^{\dagger}}{\hat{f}_{-k}}=\left(\begin{array}{cc}
u_{k} & v_{k} \\
-v_{k}^{*} & u_{k}^{*}
\end{array}\right)\binom{\hat{d}_{k}^{\dagger}}{\hat{d}_{-k}}, \quad \text { for } k>0 \text { only },
$$

where $\left|u_{k}\right|^{2}+\left|v_{k}\right|^{2}=1$, if the transformation is to preserve the anticommutation relations. Also note the sign difference (compared with the Bose case) that appears in transformation itself: this is needed to ensure that \hat{f}_{k}^{\dagger} and \hat{f}_{-k}^{\dagger} anticommute.
The spectrum should come out to be

$$
\epsilon_{k}=\frac{1}{2}\left(J_{X}^{2}+J_{Y}^{2}+2 J_{X} J_{Y} \cos [2 k a]\right)^{1 / 2} .
$$

Does the result make sense for the special cases $J_{X}=J_{Y}$ (the isotropic XY model) and $J_{Y}=0$ (the Ising model)?

