
PC4902: Elements of QMBT, Pt 2 Problems 5

Key: Easy; Moderate; Difficult; Optional

1. [EM] For a one-dimensional Heisenberg antiferromagnet of (an even
number) N spins with S � 1, the Hamiltonian may be approximated
by the quadratic expression

Ĥ = JS
∑

j

(

â†
j â

†
j+1 + âj âj+1 + 2â†

j âj

)

− NJS2,

where {â†
j , âj} are the Holstein-Primakoff Bose operators and the sum

includes the sites of both sub-lattices. In the lecture we considered a
Bose operator that creates a running wave; in one dimension this would
be

b̂†k =
1√
N

∑

j

eikjaâ†
j ,

where a is the lattice spacing and k = 2π × [integer]/Na is the wave
vector appropriate to periodic boundary conditions. Show that in terms
of these new operators, the Hamiltonian can be written as

Ĥ = JS
∑

k

(

coska
{

b̂†k b̂†−k + b̂k b̂−k

}

+ 2b̂†k b̂k

)

− NJS2.

Use this form for the Hamiltonian to obtain the commutators of Ĥ with
b̂†k and b̂−k:

[

Ĥ, b̂†k
]

= 2JS
(

b̂†k + cos ka b̂−k

)

[

Ĥ, b̂−k

]

= −2JS
(

b̂−k + cos ka b̂†k
)

.

Make the Bogoliubov transformation β̂†
k = uk b̂†k + vk b̂−k to help solve

the equation of motion for the excitation creation operator β̂†
k, and so

obtain the excitation spectrum

εk = 2JS |sin ka| .
[OD] If you have plenty of time, solve for the coefficients uk and vk that
appear in the Bogoliubov transformation, and hence show that

Ĥ =
∑

k

εk

{

β̂†
kβ̂k + 1

2

}

− NJS(S + 1).

You can then integrate the zero-point energy of the magnons to obtain
the spin-wave approximation to the ground state energy

E0 = −NJS

(

S + 1 − 2

π

)

.

Even for S = 1

2
(the worst possible case) this is quite a good approxima-

tion to the exact result, E0 = −NJ
(

ln 2− 1

4

)

. The agreement may well
be fortuitous here: to find out, we would need to analyse higher-order
terms in the expansion in powers of 1/S.



2. [EM] Show to your own satisfaction that the Jordan–Wigner transfor-
mation from spin- 1

2
operators to fermions,

Ŝz
j → ĉ†j ĉj − 1

2
, Ŝ+

j → ĉ†j eiπΣ̂j , Ŝ−
j → ĉj eiπΣ̂j ,

where
Σ̂j =

∑

i<j

ĉ†i ĉi ,

correctly reproduces the commutation relations of the spin components.
Note that we have written eiπ instead of the (−1) used in lectures.

In a one-dimensional chain of N spins S = 1

2
with anisotropic interac-

tions, the Hamiltonian operator takes the form

Ĥ =
∑

j

{

JX Ŝx
j Ŝx

j+1 + JY Ŝy
j Ŝy

j+1

}

,

where JX and JY are constants. Use the Jordan–Wigner transformation
to show that the Hamiltonian may be re-written as

Ĥ =
∑

j

{

−t
(

ĉ†j ĉj+1 + ĉ†j+1ĉj

)

+ ∆
(

ĉ†j ĉ
†
j+1 + ĉj+1ĉj

)}

, (1)

where t = − 1

4
(JX + JY ) and ∆ = 1

4
(JX − JY ); it will save some work if

you express the Hamiltonian in terms of Ŝ+
j and Ŝ−

j before making the
transformation to fermions.

[OD] The fermion excitation spectrum can be found by the equation-
of-motion method. The Hamiltonian (1) is similar in structure to the
lowest-order Bose approximation to the antiferromagnetic Heisenberg
Hamiltonian, which suggests a similar method of solution. We define a
creation operator for a running wave,

d̂†
k =

1√
N

∑

j

eikjaĉ†j ,

and evaluate the commutators of d̂†
k and d̂−k with Ĥ. The equation of

motion for an excitation can be solved using Bogoliubov combinations
of the form

(

f̂ †
k

f̂−k

)

=

(

uk vk

−v∗
k u∗

k

)(

d̂†
k

d̂−k

)

, for k > 0 only,

where |uk |2 + |vk|2 = 1, if the transformation is to preserve the anti-
commutation relations. Also note the sign difference (compared with
the Bose case) that appears in transformation itself: this is needed to

ensure that f̂ †
k and f̂ †

−k anticommute.

The spectrum should come out to be

εk = 1

2

(

J2
X + J2

Y + 2JXJY cos[2ka]
)

1/2.

Does the result make sense for the special cases JX = JY (the isotropic
XY model) and JY = 0 (the Ising model)?


