PC4902: Elements of QMBT, Pt 2 Coursework 2

Please return your work to the Undergraduate Office on or before Friday 12 May.
(a) The eigenvectors of a Hermitian matrix form a complete set of vectors which may be taken to be orthonormal. Use this result to show that the largest (smallest) diagonal matrix element of a Hermitian matrix can be no greater than (less than) its largest (smallest) eigenvalue.
(b) Consider a pair of spins of equal magnitude S. By writing $\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}$ in terms of $\left(\hat{\mathbf{S}}_{1}+\hat{\mathbf{S}}_{2}\right)^{2}$, show that the largest diagonal matrix element that $\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}$ can have is S^{2}.
(c) Show that the smallest diagonal matrix element that $\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}$ can have is $-S(S+1)$.
(d) For a set of spins $\left\{\hat{\mathbf{S}}_{i}\right\}$ of equal magnitude S, consider the antiferromagnetic Heisenberg Hamiltonian

$$
\hat{H}=\sum_{i<j} J_{i j} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j},
$$

where $J_{i j}=J_{j i} \geq 0$ for all $i \neq j$. Show that the energy eigenvalues E_{n} lie in the range

$$
-S(S+1) \sum_{i<j} J_{i j} \leq E_{n} \leq S^{2} \sum_{i<j} J_{i j} .
$$

