PC4902: Elements of QMBT, Pt 2 Coursework 2

Please return your work to the Undergraduate Office on or before **Friday 12 May**.

- (a) The eigenvectors of a Hermitian matrix form a complete set of vectors which may be taken to be orthonormal. Use this result to show that the largest (smallest) diagonal matrix element of a Hermitian matrix can be no greater than (less than) its largest (smallest) eigenvalue.
- (b) Consider a pair of spins of equal magnitude S. By writing $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$ in terms of $(\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2)^2$, show that the largest diagonal matrix element that $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$ can have is S^2 .
- (c) Show that the smallest diagonal matrix element that $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$ can have is -S(S+1).
- (d) For a set of spins $\{\hat{\mathbf{S}}_i\}$ of equal magnitude S, consider the antiferromagnetic Heisenberg Hamiltonian

$$\hat{H} = \sum_{i < j} J_{ij} \,\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j,$$

where $J_{ij} = J_{ji} \ge 0$ for all $i \ne j$. Show that the energy eigenvalues E_n lie in the range

$$-S(S+1)\sum_{i< j}J_{ij} \leq E_n \leq S^2 \sum_{i< j}J_{ij}.$$