PC4902 Solutions: Addendum

At the end of question 1.1 you were asked to show explicitly that the ground-state energy of the Hubbard molecule was smaller than HartreeFock approximation to it:

Now, for any t and U,

$$
\left(U-\sqrt{U^{2}+16 t^{2}}\right)\left(U+\sqrt{U^{2}+16 t^{2}}\right)=-16 t^{2}
$$

so

$$
\frac{1}{2} U-\frac{1}{2} \sqrt{U^{2}+16 t^{2}}=\frac{-8 t^{2}}{U+\sqrt{U^{2}+16 t^{2}}}
$$

But the denominator on the right-hand side increases with t^{2}, reaching the value $4 U$ when $t^{2}=\frac{1}{2} U^{2}$. Hence

$$
\frac{1}{2} U-\frac{1}{2} \sqrt{U^{2}+16 t^{2}}<-8 t^{2} /(4 U)=-2 t^{2} / U \quad \text { for } t<U / \sqrt{2}
$$

The right-hand side coincides the Hartree-Fock result for $t<\frac{1}{2} U$, which is within the range required by $t<U / \sqrt{2}$.
The inequality needed for $t>\frac{1}{2} U$ is much easier to establish. Indeed, for any $U \neq 0$ we have $U^{2}+16 t^{2} \geq 16 t^{2}$, so

$$
E_{0}=-\frac{1}{2} \sqrt{U^{2}+16 t^{2}}+\frac{1}{2} U<-\frac{1}{2} \sqrt{16 t^{2}}+\frac{1}{2} U=-2 t+\frac{1}{2} U
$$

which is the Hartree-Fock result for $t \geq \frac{1}{2} U$.

