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Abstract

In the first part of this review, we survey the known analytic results re-
garding the non-ergodic phase of standard Minority Games. Such phases are
characterized by the fact that, at odds with ergodic regimes, the steady state
properties of the game (e.g. the volatility) depend both on the initial conditions
chosen for the agents’ learning process as well as on the learning rate. Secondly,
we present a discussion of the effects of finite-memory learning, which lifts the
non-ergodicity, in the context of spherical Minority Games.

1 Introduction

The Minority Game (MG, [1]) is perhaps the simplest agent-based model that is able,

in certain variants, to reproduce some of the empirically observed regularities that

characterize the behavior of price returns in financial markets (for a recent review

focused on the MG as a market model see [2]). It is a toy model, in the sense that the

dynamical laws governing the choices of agents are considerably stylized and thus

analytically tractable to a high degree, provided one recognizes some important

similarities with models of neural networks and disordered magnetic alloys (both

well-known in the physics of disordered systems). For this reason, it has drawn

much interest from statistical physicists. Several monographs and reviews (as well

1



as web resources) deal with the details of the model and we refer the reader to them

for a more thorough introduction and motivation [3–7].

At the core of the model lies the assumption that at each time step N agents react

to the receipt of one of P possible information patterns by either buying or selling,

in the attempt to anticipate the minority (buy low/sell high). Agents who take the

correct minority decision (i.e. those who buy when the majority is selling and vice

versa) are rewarded. Interaction between the agents is only indirect, that is players

cannot identify the precise actions of other agents, but react only to the aggregate

action of all players in the market (the price and its movements). Each agent holds

a pool of strategies based on which he makes his trading decisions mapping the

publicly available piece of information onto a binary decision (i.e. whether to buy or

to sell), and aims at identifying his best strategy using virtual scores to monitor the

performance of a particular strategy in the past. At each round of the game every

agent updates the score of each of his strategies: the scores of strategies which would

have predicted the correct minority decision are increased while those of strategies

which yield unprofitable trading decisions are reduced.

The emerging picture, which persists through almost all studied variants, is that,

in the limit where N →∞, the overall behavior changes drastically when the (finite)

parameter α = P/N crosses a critical value αc. Specifically, the volatility of the total

bid undergoes a non-trivial phase transition. The bid here serves as a proxy for the

price return in real market time series, so that the volatility reflects the magnitude

of price fluctuations. In the supercritical phase (α > αc), the dynamics is ergodic,

that is the stationary state, which can be characterized through a few macroscopic

quantities like the volatility, is unique and independent of the initial conditions

of the agents’ learning process (their ‘prior beliefs’). In the physical literature,

this phase is often called ‘asymmetric’, in reference to the fact that an explicit

symmetry of the model (equal a priori probability of buying or selling) appears to

be broken in the steady state, where one action is performed more frequently than

the other in the presence of some information patterns. Note that this implies that

the price signal possesses some predictability. In the subcritical phase (α < αc),

instead, one encounters many steady states depending on the initial conditions.

Stated differently, the dynamics breaks ergodicity below the transition. Remarkably,
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both very efficient (low volatility) and very inefficient (high volatility) states can

emerge with a slight change of the agents’ prior beliefs. Contrary to the supercritical

phase, the non-ergodic regime is symmetric, that is the symmetry between buying

and selling is preserved asymptotically1.

While the behavior of the model in the asymmetric phase has been studied in

great mathematical detail, much less is known about the symmetric phase. Here

the breakdown of ergodicity is fatal for all known analytical techniques and one is

forced to look for ad hoc solutions to every specific issue that may arise. Thus,

only a few problems have been addressed so far. Understanding the symmetric

phase is important for several reasons, including some practical ones: indeed MGs

suggest that real markets operate close to the phase transition, on the edge between

ergodicity and non-ergodicity.

We start this note by defining the model (Sec. 2) and pass then to reviewing

the known properties of the symmetric phase of the standard MG (Secs. 3 and

4), considering also the role played by market impact (Sec. 5). Next we shall

address the role of finite memory in the learning dynamics in a context where it

was previously not studied, that of the so-called ‘spherical’ MGs (Sec. 6). Our

focus will be set mainly on the physical ideas behind the different approaches rather

than on the technical details, in the hope to emphasize the overall structure of the

model’s dynamics. Indeed, while strong non-ergodicity may be enough to prevent a

full analytic treatment, a phenomenological theory would be highly desirable and we

believe that a physical understanding is necessary in order to develop such a theory.

2 The model

The MG describes a system of N agents which will be labelled with Roman indices

i, j, and proceeds in discrete rounds (trading periods) t = 0, 1, 2.... At each time

step t every agent i takes a trading decision bi(t) ∈ IR (a ‘bid’) in response to the

observation of a public information pattern µ(t). In the original version of the MG

this information represented the actual market history [1, 10–15], but it has been
1It is worth remarking that some variants of the MG do not exhibit non-ergodic symmetric

phases. Examples can be found in [8, 9].
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shown that results do not change qualitatively if the information patterns are drawn

at random at each step [16]. What is important, however, is that all agents are

presented with the same information at each time step, as this induces the effective

interaction and co-ordination between agents. We will in the following consider

the MG with random external information, and will assume that µ(t) is chosen

randomly and independently from a set with P = αN possible patterns, i.e. µ(t) ∈
{1, . . . , αN}. One then defines the so-called re-scaled total market bid at round t

as A(t) = N−1/2
∑

i bi(t) (the re-scaling factor N−1/2 here simplifies the subsequent

theoretical analysis, as it renders A(t) finite in the so-called thermodynamic limit

N →∞).

To take his trading actions, each agent i holds a pool of S fixed trading strategies

(look-up tables) Ria = (R1
ia, . . . , R

P
ia), with a = 1, . . . , S. Typically we will here focus

on the case S = 2, as the behaviour of the model does not change qualitatively for

a larger number of strategies per player [17, 18]. If agent i decides to use strategy

a in round t of the game, his trading action at this stage will be bi(t) = R
µ(t)
ia . All

strategies Ria are chosen randomly and without correlation before the dynamics

is started; they represent the agents’ heterogeneity, in that they are generically

expected to react differently from each other (in physics jargon, this is the “quenched

disorder” of the problem). The standard choice in the literature are binary strategy

entries, Ria ∈ {−1, 1}P , but modification to continuous entries or MGs with inner

product definitions have been considered [10,15].

In order to decide which strategy to use the agents keep track of a score pia(t)

which they allocate to each of their strategies, so that pia(t) denotes the score of

agent i’s strategy table number a at time t. These score valuations are based on the

success had the player always played that particular strategy, i.e one has

pia(t + 1) = pia(t)−R
µ(t)
ia A(t). (1)

The minus sign ensures that strategies which would have produced a minority de-

cision are rewarded (in this case R
µ(t)
ia A(t) is negative, so that the score pia is

increased). At each round t a given player i then uses the strategy in his pool

with the highest score, i.e. bi(t) = R
µ(t)
iãi(t)

, where ãi(t) = arg maxa pia(t). For

S = 2 the rules (1) can be simplified as only the difference between the two scores,
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qi(t) = 1
2 [pi1(t) − pi2(t)] is relevant for player i’s actions: he plays strategy Ri1 in

round t if qi(t) > 0, and Ri2 if qi(t) < 0 (for this reason, qi(t) is sometimes referred

to as the ‘preference’ of agent i at time t). Player i’s bid in round t then reads

bi(t) = ω
µ(t)
i + sgn[qi(t)]ξ

µ(t)
i , where ωi = 1

2 [Ri1 + Ri2] and ξi = 1
2 [Ri1 −Ri2]. The

above update rule for the scores {pia(t)} can then be cast as the following update

prescription for the score differences {qi(t)}:

qi(t + 1) = qi(t)− ξ
µ(t)
i

Ωµ(t) +
1√
N

∑
j

ξ
µ(t)
j sgn[qj(t)]

 , (2)

with Ω = N−1/2
∑

j ωj . Equation (2) defines the standard so-called ‘on-line’ MG.

Numerical simulations of the MG have established that only one basic parameter

controls the dynamics of the model, namely the ratio α = P/N of the number

of different information patterns over the number of players in the system. I.e.

differently sized populations of agents behave quantitatively identically if the number

of values P the information patterns can take is re-scaled as to keep P/N constant.

The key observables of the MG are the so-called volatility σ2 and the predictability

H of the resulting time-series of bids. While the predictability is given by

H =
1
P

P∑
µ=1

〈A|µ〉t (3)

with 〈·|µ〉t an time-average conditioned on the occurence of information pattern µ,

σ2 is simply defined as the variance of the time series A(t)

σ2 =
〈
A2(t)

〉
t

(4)

H = 0 indicates that 〈A|µ〉t = 0 for all µ, i.e. the time-series A(t) is unpredictable.

If H > 0, however, there exist µ so that the sign and magnitude of the bid A(t)

given a state µ can be predicted in a statistical sense. The volatility σ2 is instead

a measure for the global performance of the market. If σ2 ≈ 0 then buying and

selling bids are roughly matched at each time step (a perfect balance corresponds to

A(t) = 0). In this case of (roughly) equally many buyers and sellers a large fraction

of agents will be in the minority at any given time-step (imagine a situation in which
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Figure 1: σ2 and H as a function of α for different initial conditions (qi(0) = q(0)

for all i at the start of the game). The two branches of σ2 for small α behave

respectively as 1/α (top) and α (bottom). See Eq. (15).

50 agents play +1 and 51 agents play −1 at a given step, resulting in 50 winners

and 51 losers), hence the number of ‘winners’ among the N agents takes its maximal

value N/2. The population of agents is globally successful. If however σ2 is large,

then supply and demand are not well matched, and a only a small fraction of the

agents win at any step (one may for example think of a situation in which e.g. 91

out of N = 101 agents play +1, while the other 10 play −1. Then only 10 out

of 101 agents are winners in this particlar round). A more careful analysis shows

indeed that the overall payoff cumulated over the entire population is given by −σ2

(the overall payoff is always non-positive, as the MG is intrinsically a negative-sum

game). Note that the profit of each winner is smaller the smaller is σ2, because it

has to be shared with a larger number of other winners.

Plotting σ2 and H as a function of α (see Fig. 1) reveals several interesting

features of the standard MG:

• A phase with vanishing predictability H = 0 is observed for small α = P/N ,
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separated from one with positive predictability at large α. The two regimes

are separated by a phase transition at αc = 0.3374...

• The transition point between these two phases corresponds to a minimum in

the volatility σ2 if the dynamics is started from so-called tabula rasa initial

conditions (qi(0) = 0 for all i).

• Above αc initial conditions have no influence on the stationary states of the

dynamics. Neither H nor σ2 depend on the starting point. Below αc however

different branches for σ2 are observed for different biases qi(0) of the initial

score-valuations. In particular one finds solutions in which σ2 → 0 for α → 0,

and others in which the volatility diverges as the limit α → 0 is approached.

The latter phase at low α is referred to as the symmetric phase (H = 0), or as the

non-ergodic phase in the literature, as the stationary state is here strongly dependent

on initial conditions. The remainder of this review will focus mostly on the behaviour

of the MG in this non-ergodic phase at small α = P/N < αc. We here note that

similar transitions are observed ina a variety of extensions and modifications of the

MG, but that the numerical value of αc can depend on the specific model considered.

3 The dynamical approach: role of initial conditions

To simplify the dynamical analysis of the MG process, it is common to address the

so-called ‘batch limit’, first introduced in [19], where one considers the dynamics in

terms of an average over all possible values of the external information in (2). This

corresponds to updating the {qi} only once every O(N) time-steps, and leads to the

the so-called ‘batch’ dynamics2:

qi(t + 1) = qi(t)−
2
N

∑
j

 P∑
µ=1

ξµ
i ξµ

j sj(t) +
P∑

µ=1

ξµ
i ωµ

j

 . (5)

2A detailed analysis shows that the phase behaviour of batch and on-line games is identical, and

only small quantitative differences are observed for the volatility. See however [20] for versions of

MGs where on-line and batch MGs differ in their qualitative behaviours.
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Here sj(t) = sgn[qj(t)]. The dynamical approach employs path-integrals to calculate

relevant macroscopic observables directly from the dynamics. The net result of the

(lengthy) procedure is that the set of N globally coupled processes above can be

re-cast in the form of a single stochastic process possessing the same steady state

properties. It is customary to think that such process describes the behaviour of a

single (representative) trader. This process is given by

q(t + 1) = q(t)− α
∑
t′≤t

(1I + G)−1
tt′ s(t′) +

√
αη(t), (6)

where s(t) = sgn[q(t)] and η(t) is a coloured Gaussian noise with covariance matrix

as follows 〈
η(t)η(t′)

〉
= [(1I + G)−1D(1I + GT )−1]tt′ . (7)

The functions Ctt′ and Gtt′ , called respectively correlation and response functions,

are to be computed self-consistently from

Ctt′ =
〈
s(t)s(t′)

〉
, Gtt′ =

1√
α

∂

∂η(t′)
〈s(t)〉 , (8)

where 〈·〉 denotes an average over realisations of the effective process, and where

Dtt′ = 1 + Ctt′ for all t, t′. While the physical meaning of the correlation function

Ctt′ is clear, that of Gtt′ is more subtle: it measures how much the representative

agent’s decision would change at time t due to a small perturbation (or a change

of the noise) applied at time t′. Practically, it quantifies how sensitive agents are

to small perturbations. The main aspect of this procedure to be kept in mind is

that, at odds with the original set of equations, the representative process is noisy.

Moreover, the noise is correlated in time, and the process is non-Markovian as the

second term on the right-hand-side of (6) represents a sum over all past time steps

t′ ≤ t.

3.1 The ergodic regime

In the ergodic regime (α > αc) initial conditions have no influence on the dynamics

in the long-run. An analytical solution is here possible based on a so-called time-

translation invariance ansatz Ctt′ = C(t−t′), Gtt′ = G(t−t′). Furthermore ergodicity
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is reflected by a finite integrated response χ =
∫

dtG(t) < ∞, as perturbations

decay fast enough. With these self-consistent assumptions explicit equations for the

integrated resonse χ and the persistent part c of the correlation function can be

found. Specifically one has [19]

c = 1−
(

1− 1 + c

α

)
erf

(√
α

2(1 + c)

)
− 2

√
1 + c

2πα
e−α/(2(1+c)) (9)

and

χ−1 =
α

erf
(√

α
2(1+c)

) − 1. (10)

In the derivation of these equations it turns out to be crucial that agents can be

divided into two classes: (i) so-called frozen agents, who in the long-run never change

strategies, (ii) so-called fickle agents. These are all other non-frozen agents, i.e. those

who always or occasionally change between their two look-up tables.

We will not enter the further details here, but will only say that the predicata-

bility H can be obtained exactly from the solutions of the two equations given above

as

H =
1
2

1 + c

(1 + χ)2
(11)

and that the volatility can be approximated as3

σ2 =
1
2

1 + c

(1 + χ)2
+

1
2
(1− c) (12)

These results are valid in the ergodic phase only, as they rely on the time-translation

invariant ansatz and on a sufficiently quickly decaying response function with fi-

nite integral (χ < ∞). The ergodic theory hence predicts its own breakdown self-

consistently as the point at which χ diverges. Numerical solution of the above

equations reveals that this occurs when α ↓ αc, where αc = 0.3374....

3.2 The non-ergodic regime: limit α → 0

Studying the dynamics in the non-ergodic phase is much more intricate, as initial

conditions here matter crucially. This complicates the theoretical analysis as one
3There are several different approximate expressions in the literature (see e.g. [4] for details).

We here only give the most common one.
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needs to keep track of the starting point of dynamics, and may not restrict the

attention to a stationary state. As we have seen in Fig. 1 several branches of

solutions exists below the phase transition, which one of these is reached by the

dynamics asymptotically depends on how the system is initialised, e.g. on the initial

bias in the strategy valuations of players.

Analytical progress is however possible in the limit of only few information pat-

terns P , more precisely in the limit P � N , i.e. α → 0. In this regime one observes

in simulations that all agents belong to one of the two following groups:

(i) Frozen agents: these are, as above, agents who asympotically never switch

strategies, i.e they have si(t) ≡ +1 or si(t) ≡ −1 independently of t.

(ii) Oscillatory agents: these are agents who switch strategies at every time step,

i.e for such agents one has si(t) = (−1)t or all t or si(t) = −(−1)t for all t.

This observation allows one to make an ansatz of the form Ct+τ,t = c+(1− c)(−1)τ

for the correlation function, and η(t) = γz
√

(1− c)(−1)t for the single-agent noise

η(t), with γ ≡ [1+ G̃(π)]−1 =
∑

t(−1)t(1I+G)−1(t), where G̃(ω) denotes the Fourier

transform of the time-translation invariant response function G(t). z in the above

expression is a static Gaussian variable of zero mean and unit variance, and reflects

the stochasticity of the representative agent process within the simplications of the

ansatz used. Is is then possible to find explicit ansätze also for the trajectories of

frozen and oscillatory representative agents. We will not give details here, but refer

to [4, 19] for their precise algebraic forms. Upon using these ansätze one then finds

the following equations for the volatility σ2 and the fraction of frozen agents φ in

the limit α → 0 [19]:

σ =
∫

dqP (q)
exp

(
−q2/(ασ2)

)
√

απ
(13)

φ =
∫

dqP (q)erf
(

|q|
σ
√

α

)
(14)

The problem is hence reduced to finding the distribution P (q) of score-differences.

This quantity contains all remaining memory of initial conditions. Assuming it takes

a Gaussian form P (q) ∼ e−(q−q0)2/(2Λ2) with q0 ≡ q(0) the bias imposed initially
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further information about the volatility σ can be extracted in the limit α → 0.

Namely one finds high volatility solutions for sufficiently small initial biases, and

low-volatility solutions for large initial bias:

α → 0 : σ2 ∼

1/α for q0 < q0c ≡ (2πe)−1

α for q0 > q0c

(15)

Note that the critical value q0c can here be obtained analytically as q0c = 1/(2πe)

[19].

4 The static approach: the role of the learning rate

We have seen that the dynamics of preferences in the case S = 2 takes the simple

form

qi(t + 1)− qi(t) = −ξiA(t) , A(t) = Ωµ +
1√
N

∑
i

si(t)ξ
µ
i , (16)

where the over-line denotes the ‘batch’ averaging over µ’s. Let us generalize the

choice rule si(t) = sgn[qi(t)] to the logit form

Prob{si(t) = s} ∝ eΓpis(t) (17)

(we have here labeled the two strategies of player i by s = ±1 to compactify the

notation). A finite value of Γ introduces decision noise (the original deterministic

update rule, in which the better-performing strategy is chosen stricly at each step,

corresponds to Γ → ∞). At finite Γ it is possible to derive the continuous-time

equivalent of Eq. (16) for the re-scaled variable yi(t) = Γqi(t). The procedure is

detailed in [6, 21]. The resulting Langevin equation contains a noise term which

accounts for the volatile decision dynamics:

dyi

dt
= −ξiΩ−

∑
j

ξiξj tanh yi + zi(t), (18)

〈zi(t)〉 = 0, 〈zi(t)zj(t′)〉 =
Γσ2

P
ξiξjδ(t− t′). (19)
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This means that in the continuous-time limit the preferences are subject to stochastic

fluctuations of magnitude
√

Γ around their average, which evolves according to

d〈yi〉
dt

= −ξiΩ−
∑

j

ξiξj〈tanh yi〉 (20)

One sees that, perhaps counter-intuitively, for Γ → 0 the dynamics becomes

deterministic and admits the Lyapunov function

H =
1
P

∑
µ

[
Ωµ +

∑
i

ξµ
i mi

]2

(21)

with mi = 〈tanh yi〉. In other words, the stationary states are described by the

minima of H in [−1, 1]N (the domain of variability of the mi’s). This makes the

Γ → 0 case particularly simple to analyze. Indeed, the minimization of H can

be carried out using spin-glass techniques (see e.g. [3, 6, 13] for detailed accounts).

Generally speaking, H is a non-negative definite quadratic form, implying that it

attains its minimum on a connected set of point (eventually a single point). Indeed

in the ergodic phase (α > αc), it turns out that H has a single point-like minimum,

where it has a non-zero (positive) value (we shall denote the minimum value of

H by H?). As a consequence, the steady state is unique. Now H? decreases as

α ↓ αc and vanishes at and below αc (non-ergodic phase). Below αc, the equation

H = 0 admits many solutions (it roughly corresponds to P conditions of the form

Ωµ + N−1/2
∑

i ξ
µ
i mi = 0 which have to be satisfied by N variables with N > P ),

which as said above must form a connected subset of [−1, 1]N . This implies the

existence of multiple steady states and naturally a dependence on initial conditions.

When Γ > 0 the situation changes because H is no longer an exact Lyapunov

function. From the viewpoint of individual agents, a larger Γ implies larger fluctua-

tions of the preferences around their averages and thus a longer time needed to wash

them out. However, it can be shown that only the non-ergodic phase is affected by

a non-zero Γ. Its effects are particularly strong on the volatility σ2 = 〈A2〉, which

after some algebraic manipulations can be written as

σ2 = H +
∑

i

ξ2
i (1−m2

i ) +
∑
i6=j

ξiξj〈(tanh yi −mi)(tanh yj −mj)〉 (22)
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Figure 2: Volatility σ2 versus Γ in the ergodic phase (α = 1, lower curve) and in the

non-ergodic phase (α = 0.1, upper curve).

The last term on the right-hand-side is the problematic one. If agents i and j act in

an uncorrelated way, then the average factorizes and, as 〈tanh yi〉 = mi by definition,

becomes identically zero. It can be shown [21] that below αc this is not the case and

one would have to evaluate the average in the last term explicitly. In particular, the

average is performed with respect to the probability distribution of the preferences

yi’s, which depend on Γ through the noise term in the Langevin equation. Hence

if agents act in a correlated way a dependence on Γ is to be expected. Indeed

numerically one finds that σ2 increases with Γ when α < αc, while the volatility is

independent of Γ in the large-α phase (see Fig. 2). Below αc, the dependence on Γ

adds to that on initial conditions so that

σ2 =

f(α) for α > αc

g(α, Γ, {yi(0)}) for α < αc

(23)

where f and g are some functions. The former has been well approximated by

different means. The latter is not known except for the case Γ = 0, {yi(0) = 0},
when it can be recovered from the minimization of H. Note that in general the

13



calculation of σ2 requires solving a complicated self-consistent problem, since when

it’s not vanishing the average 〈(tanh yi − mi)(tanh yj − mj)〉 depends on σ2 itself

through the noise covariance in the Langevin equation (see (18)). However it has

been shown that for {yi(0) = 0}, below αc, the solution for Γ � 1 can be expanded

as [21]
σ2

N
=

1−Q

2

[
1 +

1−Q + α(1− 3Q)
4α

Γ +O(Γ2)
]

(24)

where Q = (1/N)
∑

i m
2
i . This is to date the most accurate explicit result we have

on the subcritical behavior of the volatility as a function of Γ.

5 The role of price impact

One of the key behavioral assumption of agent-based models of financial markets

is that traders are price-takers, that is they neglect the impact they have on prices

and treat them as an external signal (in a daily-life situation one might argue that

a costumer who goes to a supermarket to buy -say- milk would not normally take

into account that his buying milk might have an impact on the future price of milk,

but that he treats the present and future prices as given quantities). The usual

justification for this assumption is that it is normally impossible for a trader to

estimate how much the price would have changed had he acted differently. Moreover,

in a market with a large number N of traders all of which are similar in financial

size, it is reasonable to assume that each trader’s contribution will weigh 1/N in

the aggregate leading to the price. So every individual impact is vanishingly small

when N → ∞. There are however some caveats. First, it is well known that a

single trade can have a large impact on the price if for instance the market is in

a state where few orders are present. This is clearly a crucial aspect to monitor if

one is to develop automated trading systems. Secondly, it turns out that as soon

as agents take even an infinitessimally small account of their impact, the market’s

global dynamical properties can be altered considerably.

In MGs, impact can be taken into account when each trader in his learning

dynamics adjust the actual price return A(t) =
∑

i bi(t) by disentangling his bid

and substituting it with the trading action he might have taken instead (e.g. buy
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instead of sell). If an agent were to take his impact on the price movements into

account he would thus not use A(t) in the update rule, but a modified global bid

A(t)−bi(t)+R
µ(t)
is (with s 6= si(t)), where his action (bi(t)) is replaced by a potentially

different one (Rµ(t)
is ), which he might have taken instead. This ensures that he

estimates the profitability of strategy s using always the correct price return, namely

that which would have occurred had he actually used s (see however [6] for a more

thorough discussion). In order to allow for different degrees of agents’ sophistication

in the learning process, the following adjusted dynamics has been proposed [13]:

pia(t + 1)− pia(t) = −R
µ(t)
ia

[
A(t)− η

(
bi(t)−R

µ(t)
ia

)]
. (25)

η = 0 and η = 1 correspond, respectively, to the original model (price-taking agents)

and to the fully adjusted case (‘sophisticated’ traders). Varying η from 0 to 1 allows

for an interpolation between these two limiting cases. This model has been studied

both with dynamical and static methods [22, 23]. It is particularly interesting to

analyze the phase structure of the model in the (α, η)-plane (see Fig. 3), the previous

cases without impact correction corresponding to the line η = 0. One finds that the

non-ergodic phase expands as η increases (i.e. the critical values of α for the onset

of non-ergodicity become larger), until for η = 1 the ergodic phase disappears and

the market is completely non-ergodic 4.

Perhaps surprisingly, for η = 1 the model can be simplified and more detailed

information about the steady states can be drawn [22]. The simplification consists

in the fact that all agents freeze, that is

lim
N→∞

1
N

∑
i

〈si〉2t = 1 for η = 1 (26)

at large times. In other words, asymptotically every trader locates an optimal strat-

egy in his pool and sticks to it. This is the Nash equilibrium of the MG: no agent has

an incentive to unilaterally switch strategies. As a consequence, agents here behave

deterministically in the sense that upon receiving the same information pattern they
4We note however that the predictability H remains strictly positive for all α, when η > 0.

The notion of non-ergodicity in MGs with impact correction is hence different from the one in the

standard MG. The precise pattern of ergodicity breaking in such versions of the MG is discussed

in [22,23].
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Figure 3: Phase structure of the MG with market impact correction.

always react in the same way. An intuitive reason for this is that for η = 1 agents

no longer minimize a non-negative definite quadratic form (such as H). As a matter

of fact, it can be shown that the quantity they minimize is precisely σ2, which as

a function of the mi’s is harmonic. This implies that it attains its minima on the

corners of its configuration space, hence in points where each mi is either 1 or −1.

Evidently these minima are disconnected, at odds with what happens when η = 0.

Moreover there are 2N such corners so one would expect the number of steady states

to be exponentially large (in N). This is indeed the case. The difference between

the MG with and without price impact can be summarized in the following table.
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η = 0 η = 1

Ergodicity Preserved above αc, broken below broken

Nr of steady states Unique above αc, degenerate below ∼ eΣN , Σ > 0

Geometry of the steady state Point-like above αc, continuous below disconnected

Dependence on Γ Absent above αc, present below Absent

Agents’ behaviour Stochastic Deterministic

Predictability Present above αc, absent below present

6 The role of finite score memory: the case of Spherical

Minority Games

Minority Games with finite score memories have attracted attention since they dis-

play a behaviour qualitatively different from the one of standard MGs [8]. In par-

ticular non-ergodic phases are absent. In such games agents ‘forget’ their past score

valuations exponentially at a rate λ, and the score updates are performed according

to the following (batch) rule

qi(t + 1) = (1− λ)qi(t)−
∑

j

Jijsj(t)− hi, (27)

where we have abbreviated Jij = 2
N

∑
µ ξµ

i ξµ
j and hi = 2

N

∑
µ ξµ

i Ωµ, Ωµ =
∑

j ωµ
j .

For λ = 0 one recovers the standard MG (no memory-loss). It is intuitively easy

to understand that no non-ergodic behaviour and sensitivity to initial conditions is

observed whenever λ > 0: as the outcomes of past rounds are taken into account

with an exponentially vanishing weight as time progresses, the effects of the start-

ing point decays as well, and initial conditions have no influence on the dynamics

asymptotically. These properties make such model ideally suited for studying the

onset of non-ergodicity by varying λ from 0 upwards. (It is worth adding that these

games generate highly non-trivial and realistic time-series with bursts of fluctuations

on as yet not understood time-scales [8, 24].) Even though such games are purely

ergodic, they pose a serious challenge from the theoretical point of view (recall that

in their ergodic regimes standard MGs are usually soluble). Due to the finiteness

of the memory, there are no frozen agents when λ > 0. Unfortunately, all known
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theoretical approaches rely on the existence of the latter, so that further analytical

understanding is impeded in the case of finite memory and absence of frozen agents.

Progress can here be made by considering so-called ‘spherical’ limits of the MG,

addressed in [9, 25], inspired by work done in the physics of spin systems [26]. The

hard variables si(t) = sgn[qi(t)] ∈ {−1,+1} are here replaced by ‘soft’ ones, φi(t) ∈
IR, which in turn obey a spherical constraint

∑N
i=1 φi(t)2 = N . In a batch setup the

update rules of the finite-memory spherical MG then read

qi(t + 1) = (1− λ)qi(t)−
∑

j

Jijφj(t)− hi. (28)

Note that sj(t) in (27) has been replaced φj(t). The spherical constraint is imple-

mented through

φi(t) =
qi(t)
ρ(t)

, (29)

where the multiplier ρ(t) is chosen to ensure that N−1
∑

i φi(t)2 = 1 at all times t.

This model describes agents who use linear combinations of their two strategies.

A full theoretical analysis can then be performed in the ergodic phase. We do

not give details here, but refer to [9,25] for analyses of similar cases. Let it suffice to

say that the volatility can be computed exactly without making any approximations

at any stage5.

Fig. 4 shows that the model without memory loss (λ = 0) shows ergodic behavior

for α > αc, and a non-ergodic phase with several branches of the volatility below

the transition as described in detail in [25]. Simulations suggest that introducing

finite memory λ > 0 removes the transition6 and renders the model fully ergodic for

all α. Still, unlike the non-spherical version, exact expressions can be found for the

volatility, as indicated by the solid lines in Fig. 4.
5Expressions obtained for σ2 in non-spherical MGs are typically only of an approximate nature,

as certain correlations between agents or, equivalently, transient parts of the dynamics are neglected.
6Spherical models typically exhibit two types of ergodic phases, a frozen and an oscillatory

one [9,25]. This appears to be the case for small λ > 0 as well, where as for large enough λ only the

oscillatory phase appears to be present. The lower phase boundary of the frozen ergodic phase here

warrants further investigation to fully confirm the absence of ergodicity breaking in the spherical

model with finite memory.
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Figure 4: Volatility for the spherical MG with finite memory. Symbols: simulations

are batch N = 300, 500 steps, 10 samples. Lines: theory.

7 Summary

Non-ergodic phases in Minority Games are not well understood. The ability of

MGs to reproduce the empirical phenomenology (volatility clustering, fat-tailed price

returns, etc) is more striking around the critical point separating the two phases [2,3,

6]. This suggests that markets operate on the border between efficient (non-ergodic)

and inefficient (ergodic) phases. A deeper understanding of the former would thus

be important not only from a purely theoretical viewpoint (from which obtaining

solutions in the non-ergodic regime can be seen as an interesting mathematical

challenge) but also from a practical side, e.g. to develop trading platforms based

on the MG: phases with high volatility typically have tinier minorities, which make

larger profits, than phases with low volatility. A reasonable mechanism for the

switching between different phases might be based on the fact that more predictable

markets would attract more investors hence decrease α (the ratio of the number

information patterns divided by the number of agents), while more unpredictable
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markets would repel investors hence increase α. Thus α would naturally oscillate

around the critical point, and potentially converge to result in an analogue of self-

organised criticality. Interestingly, no model has been proposed so far that displays

this dynamical feedback.
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