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General deterministic epidemic

x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)x(t)

susceptibles

y(t) z(t)

removedinfectives

(x(0), y(0), z(0)) = (N, a, 0)

β = infection rate

γ = removal rate

SIR (susceptible → infective → removed)
dx
dt = −βxy, dy

dt = βxy − γy, dz
dt = γy

dy
dt > 0 ⇐⇒ βxy − γy > 0 ⇐⇒ x > γ/β

Epidemic takes off ⇐⇒ N > γ/β ⇐⇒ R0 = Nβ/γ > 1

(Kermack and McKendrick (1927))
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General deterministic epidemic
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General stochastic epidemic

susceptibles infectives removed

X(t) Y(t) Z(t)

X(0) = N

Y (0) = a

Z(0) = 0

Transition Probability

t t + ∆t

(x − 1, y + 1) βxy∆t + o(∆t)

(x, y)
infection 11ccccccccccccccc

removal
--[[[[[[[[[[[[[[[[[

(x, y − 1) γy∆t + o(∆t)

(Bartlett (1949))
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General stochastic epidemic

susceptibles infectives removed

X(t) Y(t) Z(t)

X(0) = N

Y (0) = a

Z(0) = 0

Final size T = N − X(∞) — number of susceptibles
ultimately infected

Let Pj = P(T = j) (j = 0, 1, . . . , N). Then

i∑

j=0

(
N − j

N − i

)(

1 +

(

1 −
i

N
R0

))a+j

Pj =

(
N

i

)

(i = 0, 1, . . . , N)

(Whittle (1955))
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Final size
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Threshold behaviour
Consider epidemic with initially few infectives and many
susceptibles

If R0 ≤ 1, then
Only minor outbreaks occur
Size of outbreak distributed according to total
progeny of approximating branching process, Z say,
in which all contacts lead to an infection

If R0 > 1,
P(major outbreak) = 1 − P(Z goes extinct) > 0

Size of minor outbreak distributed according to total
progeny of Z, conditional upon extinction
Size of major outbreak satisfies a central limit
theorem with mean given by deterministic model

(von Bahr and Martin-Löf (1980))
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Basic reproduction numberR0

R0 = "the expected number of secondary cases
produced by a typical infected individual during its entire
infectious period, in a population consisting of
susceptibles only" (Heesterbeek and Dietz (1996))

Major outbreak can occur ⇐⇒ R0 > 1

If proportion c of susceptibles is vaccinated with a
perfect vaccine, R0 is reduced to Rv = (1 − c)R0, so, if
R0 > 1,

Rv ≤ 1 ⇐⇒ c ≥ 1 − R−1
0 — critical vaccination coverage

(Smith (1964))
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Multitype general deterministic epidemic

m types of individual, labelled 1, 2, . . . ,m, reflecting
e.g. age, vaccine status, geographical location.

dxi

dt
= −xi

m∑

j=1

βjiyj ,

dyi

dt
= xi

m∑

j=1

βjiyj − γiyi,

dzi

dt
= γiyi (i = 1, 2, . . . , m),

with (xi(0), yi(0), zi(0)) = (Ni, ai, 0)

Analogues of all previous results hold BUT threshold
behaviour requires Ni → ∞ (i = 1, 2, . . . ,m), i.e. that the
population is LOCALLY LARGE
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Non-locally-large models

Spatial models
percolation
structure too rigid for human populations

Network models

Multi-level mixing models
metapopulation/households models

Complex simulation models
more realistic but can be computationally expensive
and difficult to interpret
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General two-level-mixing epidemic model

11

2
3

N

Population

N = {1, 2, . . . , N}

SIR (susceptible → infective → removed)

Infectious periods I1, I2, . . . , IN iid ∼ I (arbitrary but specified)

Infection rates (individual → individual)

local λL
ij

global λG/N

Latent period
(Ball and Neal (2002))
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Households model

m households, each of size n

N = mn

λL
ij =







λL if i and j belong to same household

0 otherwise

Unequal-sized households.

(Bartoszyński (1972), Becker and Dietz (1995), Ball, Mollison and Scalia-Tomba (1997))
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Overlapping groups model

Workplace

Household

mα households, each of size nα, mβ workplaces, each of size nβ , so
N = mαnα = mβnβ

λL
ij =







λL
α if i and j belong to same household

λL
β if i and j belong to same workplace

0 otherwise

(Ball and Neal (2002), cf. Andersson (1997))
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Great circle model

3
2

1N − 1
N

λL
ij =







λL if i and j are neighbours

0 otherwise

‘Small-world’ networks

More general contact distribution

(Ball, Mollison and Scalia-Tomba (1997), Ball and Neal (2002, 2003))
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Networks with casual contacts

‘independent’ random graph of possible local contacts with specified
degree distribution p

k
= P(D = k) (k = 0, 1, . . . )

λL
ij =







λL if i and j are neighbours

0 otherwise

(Diekmann et al. (1998), Ball and Neal (2002), (2008), Kiss et al. (2006); Newman (2002))
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Directed graph of potential local contacts

i → j if and only if i, if infected, contacts j locally.

Given infectious periods I1, I2, . . . , IN , P(i → j) = 1 − e−λLIi

independently for distinct (i, j).
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Local infectious clumpCN
i

i

CN
i = {j ∈ N : i j}, where i j if and only if there exists a

chain of directed arcs from i to j, and CN
i = |CN

i |.
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Local infectious clumps

i

j
CN

i = {j ∈ N : i j}, where i j if and only if there exists a
chain of directed arcs from i to j, and CN

i = |CN
i |.
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Threshold parameterR∗

As N → ∞, process of infected clumps tends to a
branching process having offspring random varaible
R ∼ Poisson(λGA), where A =

∑

j∈C Ij

Global epidemic occurs if and only if this branching
process does not go extinct

R∗ = E[R] = λGE[A] = λGE
[
∑

j∈N Ij1{j∈C}

]

=

λG
∑N

j=1 E[Ij ]P(j ∈ C) = λGµIE[C]

P(global epidemic) > 0 ⇐⇒ R∗ > 1
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Local susceptibility setSN
i

i

SN
i = {j ∈ N : j  i} and SN

i = |SN
i |.
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Final outcome of global epidemic
Suppose N is large and there are few initial infectives. Let z be the expected proportion
of the population who are infected by the epidemic. Then

π = P(typical susceptible avoids global infection) = exp

(

−
λ

G

N
Nzµ

I

)

= exp(−λ
G

zµ
I
)

and

1 − z = P(typical susceptible avoids infection by epidemic)

= P(typical local susceptibility set avoids global infection)

=

∞∑

k=1

P(S = k)πk = fS(π) = fS(e−λ
G

zµ
I ) (1)

R∗ = λGµIE[C] = λGµIE[S]

R∗ ≤ 1 z = 0 is the only solution of (1) in [0, 1]

R∗ > 1 unique second solution ẑ ∈ (0, 1), giving mean ‘size’ of global epidemic

Fully rigorous proof and central limit theorem for final size of global epidemic is available
using Scalia-Tomba (1985) embedding technique
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Great circle model

i

SR

SL

Si = {i} ∪ SL ∪ SR

pL= P(i infects i + 1 locally) = 1 − E[e−λLI ]

P(SL = k) = P(SR = k) = (1 − pL)pk
L

(k = 0, 1, . . . )

SL and SL are independent, so
P(S = k) = (1 − pL)2pk−1 (k = 1, 2, . . . )

E[S] = 2p−1

L − 1
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Households model
Consider household of n individuals, labelled 1, 2, . . . , n, and let S be the
local susceptibility set of individual 1.

n−j
j−1

1

Let P
(n)
j = P(S = j) (j = 1, 2, . . . , n)

qk = E[e−kλLI ] be the probability that a given set of k

susceptibles avoids local infection from a given infective

P
(n)
j =

(
n−1
j−1

)
P

(j)
j q

n−j
j (j = 1, 2, . . . , n)

k∑

j=1

P
(k)
j = 1 =⇒

k∑

j=1

(k − 1

j − 1

)

P
(j)
j q

k−j
j = 1

=⇒

∑k
j=1

(
n−k
n−j

)
P

(n)
j

qn−k
j

=
(n − 1

k − 1

)

(k = 1, 2, . . . , n)

Triangular system of linear equations for P(S = j) (j = 1, 2, . . . , n)
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Overlapping groups model

Workplace

Household

i

Construct local susceptibility set S of typical individual i via a two-type

branching process in which individuals beget only the opposite type and the
offspring of a type α (β) individual are the individuals in its workplace

(household) susceptibility set.

If µα(µβ) is the mean size of a household (workplace) susceptiblity set, then

E[S] =







µαµβ

µα+µβ−µαµβ
if (µα − 1)(µβ − 1) < 1

∞ otherwise
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NETWORK — Configuration model

Population N = {1, 2, . . . , N}

D= degree of typical individual

p
k

= P(D = k) (k = 0, 1, . . . ) specified µ
D

= E[D]

D1, D2, . . . , DN iid copies of D, conditioned on
SN = D1 + D2 + · · · + DN being even

Attach Di half-edges to individual i (i = 1, 2, . . . , N)

Pair up the SN half-edges uniformly at random to form the network

IMPERFECTIONS — sparse if σ2
D = var(D) < ∞

(Bollobás (2001))
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Networks with casual contacts

Let D̃ = degree of typical neighbour of typical individual in the

network and µ
D̃

= E[D̃]. Then

P(D̃ = k) = kp
k
/µ

D
(k = 1, 2, . . . ) and µ

D̃
=

var(D)+µ
D

2

µ
D

.

Size of typical local susceptibility set SN a.s.
−→ S as N → ∞,

where S is the total size of a branching process having

offspring law Bin(D, pL) for the initial individual and

Bin(D̃ − 1, p
L
) for all subsequent individuals

E[S] =







1 +
µ

D
p
L

1−(µ
D̃
−1)p

L
if (µD̃ − 1)pL < 1

∞ otherwise
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‘Deterministic’ households model

m households of size n, labelled 1, 2, . . . , m.

Let xi(t) and yi(t) be the number of susceptibles
and infectives in household i at time t.

dxi

dt
= −(λLyi + N−1λG

m∑

j=1

yj)xi,

dyi

dt
= (λLyi + N−1λG

m∑

j=1

yj)xi − γyi (i = 1, 2, . . . , m),

Basic Reproduction number R0 = (λG + nλL)/γ

Proportion of susceptibles ultimately infected, ẑdet given by largest root in [0, 1]

of 1 − z = exp(−R0z)
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Households and great circle models
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Overlapping groups model, varyingλL
β
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Overlapping groups model, varyingnβ
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Networks with casual contacts
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Illustration of CLT
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size N = 10, 000 when D ≡ 8, λ
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= 0 and p
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= − log 0.8), with asymptotic normal approximation superimposed.
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Networks with casual contacts
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Networks with casual contacts
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Households SIR epidemic model

mn households of size n (n = 1, 2, . . . )

total no. of households m =
∑

∞

n=1 mn

total no. of individuals N =
∑

∞

n=1 nmn < ∞

SIR (susceptible → infective → removed)

Infectious period ∼ TI , having an arbitrary but specified distribution

Infection rates (individual → individual)

(i) local (within-household) λL

(ii) global (between-household) λG/N

Latent period

(Bartoszyński (1972), Becker and Dietz (1995), Ball, Mollison and Scalia-Tomba (1997))
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Threshold parameterR∗

GLOBAL INFECTION

R∗= mean number of global contacts emanating from a typical single-household
epidemic

R∗ =
∞∑

n=1

α̃nµn(λL)λGE[TI ],

where

α̃n = nmn

N
= P(randomly chosen person lives in a household of size n)

µn(λL) = mean size of single (size-n) household epidemic with 1 initial infective

P(global epidemic) > 0 ⇐⇒ R∗ > 1

(Ball, Mollison and Scalia-Tomba (1997), Becker and Dietz (1995))
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Vaccination

For n = 1, 2, . . . and v = 0, 1, . . . , n, let

xnv = proportion of size-n households that have v members vaccinated

µnv = mean number of global contacts emanating from a single-household

epidemic in a household in state (n, v), initiated by an individual

chosen uniformly at randomly being contacted globally

Post-vaccination

Rv =

∞∑

n=1

α̃n

n∑

v=0

xnvµnv

Vaccination coverage

c =
∞∑

n=1

α̃n

n∑

v=0

v

n
xnv

Determination of optimal vaccination scheme (e.g. to reduce Rv to 1 with minimum
vaccination coverage) is a linear programming problem, whose solution can be
constructed explicitly.

(Becker and Starczak (1997), Ball and Lyne (2002, 2006))
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Calculation of µnv

xnv = proportion of size-n households that have v members vaccinated

µnv = mean number of global contacts emanating from a single-household

epidemic in a household in state (n, v), initiated by an individual

chosen uniformly at randomly being contacted globally

µnv depends on model for vaccine action.

For an all-or-nothing model, in which vaccinees are rendered immune independently
with probability ǫ, otherwise the vaccine has no effect

µnv =

v∑

k=0

(v

k

)

ǫk(1 − ǫ)v−k

︸ ︷︷ ︸

(1)

n − k

n
︸ ︷︷ ︸

(2)

µn−k(λL)
︸ ︷︷ ︸

(3)

λGE[TI ]

(1) P(k vaccinations are successful)

(2) P(globally contacted individual is susceptible)

(3) Mean size of single-household epidemic
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Variola Minor, Sao Paulo, 1956

Data comprise final numbers infected in each of 338
households. Household size varied from 1 to 12 (mean
= 4.56)

Each individual labelled vaccinated or unvaccinated

773 unvaccinated — 425 infected (58%)
809 vaccinated — 85 infected (11%)

Fit households SIR model with non-random vaccine
response, assuming infectious period TI ≡ 1, using
pseudolikelihood method of Ball and Lyne (2010) to
obtain the estimates

λ̂L = 0.3821, λ̂G = 1.4159, â = 0.1182, b̂ = 0.8712
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Comparison of vaccination strategies
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Concluding comments

General framework for determining threshold behaviour and final
outcome of stochastic SIR epidemics with two levels of mixing.

Local (e.g. household) structure matters!

Significant impact on threshold and final outcome.

Consequent impact on performance of vaccination schemes.

Explicit calculation is possible only in a few special cases — need to
find other local structures which are both practically relevant and
mathematically tractable.

Can relax symmetries and/or consider multitype epidemics.

Non-SIR models

SIS households and great circle

SIR households with demography? FADE OUT
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Bartoszyński, R. (1972) On a certain model of an epidemic. Applic. Math. 13, 139–151.

Becker, N. G. and Dietz,K. (1995) The effect of household distribution on transmission and
control of highly infectious diseases. Math. Biosci. 127,207–219.

Becker, N. G. and Starczak. (1997) Optimal vaccination strategies for a community of
households. Math. Biosci. 139,117–132.

Becker, N. G. and Starczak. (1998) The effect of random vaccine response on the
vaccination coverage required to prevent epidemics. Math. Biosci. 154,117–135.

Bollobás, B. (2001) Random graphs. Cambridge University Press.

Diekmann, O., De Jong, M. C. M. and Metz, J. A, J. (1998) A deterministic epidemic model
taking account of repeated contacts between the same individuals. J. Appl. Prob. 35,
448–462.

Kiss, I., Green, D. and Kao, R. (2006) The effect of contact heterogeniety and multiple
routes of transmission on final epidemic size. Math. Biosci. 203, 124–136.

Newman, M. (2002) Spread of epidemic disease on networks. Phys. Rev. E 66, 016128.

Scalia-Tomba, G. (1985) Asymptotic final size distribution for some chain-binomial
processes. Adv. Appl. Prob. 17, 477–495.

Epidemics with two levels of mixing – p.44


	Outline of talk
	General deterministic epidemic
	General deterministic epidemic
	General stochastic epidemic
	General stochastic epidemic
	Final size
	Threshold behaviour
	Basic reproduction number $R_0$
	Multitype general deterministic epidemic
	Non-locally-large models
	General two-level-mixing epidemic model
	Households model
	Overlapping groups model
	Great circle model
	Networks with casual contacts
	Directed graph of potential local contacts
	Local infectious clump $mathcal {C}_i^N$ 
	Local infectious clumps 
	Threshold parameter $R_*$
	Local susceptibility set $mathcal {S}_i^N$ 
	Final outcome of global epidemic
	Great circle model
	Households model
	Overlapping groups model
	NETWORK --- Configuration model
	Networks with casual contacts
	`Deterministic' households model
	Households and great circle models
	Overlapping groups model, varying $lambda ^L_{�eta }$
	Overlapping groups model, varying $n_{�eta }$
	Networks with casual contacts
	Illustration of CLT
	Networks with casual contacts
	Networks with casual contacts
	Households SIR epidemic model
	Threshold parameter $R_*$
	Vaccination
	Calculation of $mu _{nv}$
	emph {Variola Minor}, Sao Paulo, 1956
	Comparison of vaccination strategies
	Concluding comments
	References
	References

